• Title/Summary/Keyword: cation exchange capacity(CEC)

Search Result 183, Processing Time 0.029 seconds

Cation Exchange Capacity in Korean Soils Determined by the Copper(II) Acetate Spectrophotometry Method

  • Park, Won-Pyo;Chang, Kong-Man;Koo, Bon-Jun;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.653-662
    • /
    • 2017
  • Copper(II) acetate spectrophotometry method (CASM) was used for the rapid and convenient determination of cation exchange capacity (CEC) in soils. This method is composed of a single-step exchange reaction that adsorbs copper and is measured through spectrophotometry. The CEC of 16 Korean soils were measured using 1M ammonium acetate method (AAM) and the CASM. The CEC values determined by CASM and AAM were not significantly different, and were highly correlated ($r=0.966^{**}$). Due to the convenience, cost effectiveness, and time saving analysis of CASM, this method is recommended for most soil laboratories to measure CEC in Korean soils. However, CASM may not be applicable for soils that have a much higher CEC (greater than $20cmol_c\;kg^{-1}$).

Chemical Treatment of Low-level Radioactive Liquid Wastes(II) (The Determination of Cation Exchange Capacity on various Clay Minerals)

  • Lee, Sang-Hoon;Sung, Nak-Jun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • This experiment has been carried out to determine the pH dependent cation exchange capacity concerning the sorption phenomenon of long-lived radionuclides contained in low-level liquid radioactive waste on various clay minerals. The pH dependent cation exchange capacity determined by Sawhney's method are used to the analysis of sorption phenomenon. About 70 percent of the total cation exchange capacity is contributed by the pH dependent CEC due to the negative charge originated naturally in clays in case of clinoptilolite, vermiculite and sodalite. It is sugested in this test that the high neutral salt CEC, that is, highly charged clays would show good fixation yield. The removal of radionuclides at the pH range more than pH 9 is considered the hydroxide precipitation of metal ion rather than the cation exchange. The Na-clay prepared by the method of successive isomorphic substitution with electrolyte showed a considerable improvement in removal efficiency for the decontamination.

  • PDF

Application of Zeolite with Different Cation Exchange Capacity for the Stabilization of Heavy Metals in Upland Soil (양이온교환용량이 다른 제올라이트 처리에 따른 밭토양 내 중금속 안정화 평가)

  • Gu, Bon-Wun;Kim, Mun-Ju;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.41-49
    • /
    • 2017
  • This study was aimed to investigate the influence of cation exchange capacity (CEC) and application amounts of zeolite on the stabilization of heavy metals (As, Ni, Pb, and Zn) in upland soils. The upland soils were sampled from field near mines located in Gyeonggi Province. The CEC of zeolite was treated at three different levels, ie, low, medium, and high, while zeolite was amended with soils at the ratio of 0.1 % and 0.5 % as to soil weight. A sequential extraction was performed for the soil sampled at 1, 2 4, and 8 week after zeolite was added to the soil. The concentrations of Pb and Zn appeared to be high in the sampled soils. The mobility of heavy metals obtained from sequential experiments was as follows: Pb > Zn > Ni >As. Addition of zeolite to contaminated soils effectively reduced exchangeable and carbonate fractions but increased organic and residual fraction, indicating that zeolite is effective for immobilizing heavy metals in soils. The influence of incubation time on the metal stabilization was rather pronounced as compared to the application amount and CEC of zeolite.

Reactive Dispersion and Mechanical Property of Dicyanate/Montmorillonite Nanocomposite (반응이 수반된 Dicyanate/Montmorillonite Nanocomposite의 분산과 물성특성 연구)

  • 장원영;이근제;남재도
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Dicyanate-clay nanocomposite has been prepared by a melt in-situ polymerization method for different modifiers and cation exchange capacity (CEC) values in order to study dispersion and mechanical property. Various dicyanate nanocomposites were prepared by using different MMT systems containing different intercalants which led to different initial gallery heights and packing density. Depending on compatibility between dicyanate and clays, the degree of dispersion varied. Dispersion of clay plates in dicyanate resin depended mainly on CEC and aliphatic chain length of modifier. The lower CEC and shorter aliphatic chain length of modifier gave the exfoliation structure. It was also found that the reactivity of intercalant with dicyanate resin was one of the key factors facilitating the intercalation/exfoliation process of dicyanate/MMT nanocomposites. Shear modulus of reaction-induced dicyanate nanocomposite was significantly increased.

Cation Exchange Capacity and Zeta Potential Characteristics of Kaolinite Contaminated with Lead (납으로 오염된 카올리나이트의 양이온교환능력 및 계면동전위 특성)

  • 장경수;강병희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.38-43
    • /
    • 2002
  • A series of tests were performed to investigate the effects of pH and contamination level on cation exchange capacity and zeta potential in kaolinite loaded with lead. Test results show that cation exchange capacity of kaolinite is found to be in the range from 4 to 20meq/100g and it increased with increasing pH up to the converged number about 20meq/100g over pH 8. And then CEC has a tendency to reduce and converge to zero with increasing the concentration of Pb in the kaolinite surface. Moreover, zeta potential of kaolinite contaminated with lead is found to be in the range from -10 to 5mV, and zero point of charge is measured at about pH 3.5. Zeta potential of kaolinite contaminated with lead decreases with increasing pH values and decreasing Pb concentration of kaolinite.

  • PDF

Applicability of Natural Zeolite with Different Cation Exchange Capacity as In-situ Capping Materials for Adsorbing Heavy Metals (중금속 흡착을 위한 원위치 피복소재로서 천연제올라이트의 양이온교환용량에 따른 적용성 평가)

  • Kang, Ku;Shin, Weon-Ho;Hong, Seong-Gu;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • We investigated the efficiency of natural zeolite with different cation exchange capacity (CEC) as capping material for the remediation of marine sediments contaminated with heavy metals. Three different zeolite with high CEC (HCzeo, 163.74 cmolc/kg), medium CEC (MCzeo, 127.20 cmolc/kg), and low CEC (LCzeo, 70.62 cmolc/kg) were used. The surface area of the zeolite was in decreasing order: HCzeo ($59.43m^2/g$) > MCzeo ($52.10m^2/g$) > LCzeo ($10.12m^2/g$). The results of mineralogical composition obtained from X-ray diffraction (XRD) show that LCzeo was mainly composed of quartz and albite. In the XRD result of MCzeo and HCzeo, the peaks of clinoptilolite, heulandite, and mordenite were also observed along with that of quartz and albite. Sorption equilibrium onto the HCzeo, MCzeo, and LCzeo was reached in 6 h at initial concentration of 10 mg/L and 100 mg/L. Higher adsorption of Cd and Zn onto the zeolite with higher CEC were achieved but adsorption of Cu and Ni were not dependent on the CEC of zeolite. It can be concluded that the zeolite with high cation exchange ability is recommended for the contaminated sediments with Cd and Zn but the inexpensive zeolite with low CEC for Cu and Ni.

A Numerical Solution of Transport of Mono- and Tri-valent Cations during Steady Water Flow in a Binary Exchange System

  • Ro, Hee-Myong;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • A one-dimensional transport of displacing monovalent ion, $A^+$, and a trivalent ion being displaced, $B^{3+}^ in a porous exchange system such as soil was approximated using the Crank-Nicolson implicit finite difference technique and the Thomas algorithm in tandem. The variations in the concentration profile were investigated by varying the ion-exchange equilibrium constant (k) of ion-exchange reactions, the influent concentrations, and the cation exchange capacity (CEC) of the exchanger, under constant flux condition of pore water and dispersion coefficient. A higher value of k resulted in a greater removal of the native ion, behind the sharper advancing front of displacing ion, while the magnitude of the penetration distance of $A^+$ was not great. As the CEC increased, the equivalent fraction of $B^{3+}^ initially in the soil was greater, thus indicating that a higher CEC adsorbed trivalent cations preferentially over monovalent ions. Mass balance error from simulation results was less than 1%, indicating this model accounted for instantaneous charge balance fairly well.

  • PDF

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (I): Mineral Composition and Characteristics, Cation Exchange Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (I): 광물 조성 및 특징과 양이온 교환특성과의 연계성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-344
    • /
    • 2002
  • Mineralogical and chemical characterization of some domestic bentonites, such as quantitative XRD analysis, chemical leaching experiments, pH and CEC determinations, were done without any separation procedures to understand their relationships among mineral composition, characteristics, and cation exchange properties. XRD quantification results based on Rietveld method reveal that the bentonites contain totally more than 25 wt% of impurities, such as zeolites, opal-CT, and feldspars, in addition to montmorillonite ranging 30~75 wt%. Cation exchange properties of the zeolitic bentonites are deeply affected by the content of zeolites identified as clinoptilolite-heulandite series. Clinoptilolite is common in the silicic bentonites with lighter color. and occurs closely in association with opal-CT. Ca is mostly the dominant exchangeable cation, but some zeolitic bentonites have K as a major exchangeable cation, The values of cation exchange capacity (CEC) determined by Methylene Blue method are comparatively low and have roughly a linear relationship with the montmorillonite content of the bentonite, though the correlated data tend to be rather dispersed. Compared to this, the CEC determined by Ammonium Acetate method, i.e.‘Total CEC’, has much higher values (50~115 meq/100 g). The differences between those CEC values are much greater in zeolitic bentonites, which obviously indicates the CEC increase affected by zeolite. Other impurities such as opal-CT and feldspars seem to affect insignificantly on the CEC of bentonites. When dispersed in distilled water, the pH of bentonites roughly tends to increase up to 9.3 with increasing the alkali abundance, especially Na, in exchangeable cation composition. However, some bentonites exhibit lower pH (5~6) so as to regard as ‘acid clay’. This may be due to the presence of $H^{+}$ in part as an exchangeable cation in the layer site of montmorillonite. All the works of this study ultimately suggest that an assesment of domestic bentonites in grade and quality should be accomplished through the quantitative XRD analysis and the ‘Total CEC’measurement.

Effect of Adding Gypsum and Coal Fly Ash on Composting Process of Pig Manure (돈분 퇴비화 공정에서 석고 및 석탄회의 첨가효과)

  • 유현철;김정섭;곽명화;이히인;박승조
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.32-36
    • /
    • 2002
  • This study was conducted to compost the mixture of Pig manure, gypsum and fly ash. Initial moisture contents of sample A (Pig manure : saw dust = 6 : 4) and C (Pig manure : saw dust : gypsum : coal fly ash= 6 : 2 : 1 : 1) in the reactor were 64 and 50%. Also temperature and pH of samples in the reactor was nearly the same. Total Organic Carbon (TOC) concentration of sample A and C were about 5500, 2900 mg/kg respectively. This sample was needed a lot of time to mature as viewing cation exchange capacity (CEC) after experiment was over. However added with gypsum and coal fly ash in Process of Pig manure composting Process was suggested that gypsum and coal fly ash have a roles of additive agent.

Relative Contribution of Organic Matter and Clay Content to Cation Exchange Capacity in Sandy Soils (사질토(砂質土)에서 염기치환용량(鹽基置換容量)에 대한 유기물(有機物)과 점토(粘土)의 상대기여도(相對寄與度))

  • Park, Chang-Seo;Jung, Kwang-Young;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.337-342
    • /
    • 1984
  • 224 profiles representing 19 soil series were subjected to multiple regresion analysis to determine the relative contribution of organic matter(OM) and clay content to total cation exchange capacity(CEC) in sandy soil. The independent variables were OM and clay, with the dependent variable CEC. Simple correlation coefficients showed high significance at CEC-OM and CEC-clay. The partial regression coefficients indicated that CEC for each gram of OM was calculated to be 0.549 and 1.351 meq of top and subsoil. The clay contributions of top and subsoil were 0.247 and 0.226 meq, respectively. The standard partial regression coefficients appeared that clay content was 1.23 times as important as orgnic matter in predicting CEC.

  • PDF