• Title/Summary/Keyword: cation channel

Search Result 114, Processing Time 0.031 seconds

Englerin A-sensing charged residues for transient receptor potential canonical 5 channel activation

  • Jeong, SeungJoo;Ko, Juyeon;Kim, Minji;Park, Ki Chul;Park, Eunice Yon June;Kim, Jinsung;Baik, Youngjoo;Wie, Jinhong;Cho, Art E.;Jeon, Ju-hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • The transient receptor potential canonical (TRPC) 5 channel, known as a nonselective cation channel, has a crucial role in calcium influx. TRPC5 has been reported to be activated by muscarinic receptor activation and extracellular pH change and inhibited by the protein kinase C pathway. Recent studies have also suggested that TRPC5 is extracellularly activated by englerin A (EA), but the mechanism remains unclear. The purpose of this study is to identify the EA-interaction sites in TRPC5 and thereby clarify the mechanism of TRPC5 activation. TRPC5 channels are over-expressed in human embryonic kidney (HEK293) cells. TRPC5 mutants were generated by site-directed mutagenesis. The whole-cell patch-clamp configuration was used to record TRPC5 currents. Western analysis was also performed to observe the expression of TRPC5 mutants. To identify the EA-interaction site in TRPC5, we first generated pore mutants. When screening the mutants with EA, we observed the EA-induced current increases of TRPC5 abolished in K554N, H594N, and E598Q mutants. The current increases of other mutants were reduced in different levels. We also examined the functional intactness of the mutants that had no effect by EA with TRPC5 agonists, such as carbachol or $GTP{\gamma}S$. Our results suggest that the three residues, Lys-554, His-594, and Glu-598, in TRPC5 might be responsible for direct interaction with EA, inducing the channel activation. We also suggest that although other pore residues are not critical, they could partly contribute to the EA-induced channel activation.

Ca2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain

  • Baik, Julia Young;Park, Eunice Yon June;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.277-286
    • /
    • 2020
  • Polycystic kidney disease 2-like-1 (PKD2L1), also known as polycystin-L or TRPP3, is a non-selective cation channel that regulates intracellular calcium concentration. Calmodulin (CaM) is a calcium binding protein, consisting of N-lobe and C-lobe with two calcium binding EF-hands in each lobe. In previous study, we confirmed that CaM is associated with desensitization of PKD2L1 and that CaM N-lobe and PKD2L1 EF-hand specifically are involved. However, the CaM-binding domain (CaMBD) and its inhibitory mechanism of PKD2L1 have not been identified. In order to identify CaM-binding anchor residue of PKD2L1, single mutants of putative CaMBD and EF-hand deletion mutants were generated. The current changes of the mutants were recorded with whole-cell patch clamp. The calmidazolium (CMZ), a calmodulin inhibitor, was used under different concentrations of intracellular. Among the mutants that showed similar or higher basal currents with that of the PKD2L1 wild type, L593A showed little change in current induced by CMZ. Co-expression of L593A with CaM attenuated the inhibitory effect of PKD2L1 by CaM. In the previous study it was inferred that CaM C-lobe inhibits channels by binding to PKD2L1 at 16 nM calcium concentration and CaM N-lobe at 100 nM. Based on the results at 16 nM calcium concentration condition, this study suggests that CaM C-lobe binds to Leu-593, which can be a CaM C-lobe anchor residue, to regulate channel activity. Taken together, our results provide a model for the regulation of PKD2L1 channel activity by CaM.

The Cytotoxic Mechanisms of Bacillus thuringiensis $\delta$-endotoxin, a Bioinsecticide : Effect on $K^+$ Channel of Insect Cell Lines.

  • Seo, Young-Rok;Han, Sung-Sik;Yu, Yong-Man;Lee, Jun-Jae;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.70-70
    • /
    • 1996
  • The cytotoxicological effect of Bt 1-endotoxin, well-known as a bioinsecticide, was investigated on ion channel of insect cell lines. This study attempted to evaluted the specificity by simple experiment to measure the cell swelling using lepidopteran cell lines in isotonic solution containing only one cation. Cell swelling was stimulated in KCI-sucrose isotonic solution as well as TC-100 media containg in solubilized crystal 5-endotoxin. It suggested that the cell swelling by Bt toxin have a relation to K+ channel. The cell swelling may be due to the stimulation K+ influx and simultaneously the penetration of H2O induced by Bt toxin, because the stimulation of swelling was observed with the solubilized toxin in KCI-sucrose isotonic solution, but not in sucrose isotonic solution. Moreover the specific K+ channel blocker, such as 4-arnjnopyrimidine(4-AP) and ouabain, showed the significant effect on the cell swelling induced by Bt toxin. The increasement of the cell swelling induced by 4-AP suggested to be caused by the block of K+ efflux through K+ leak channels. The inhibition of cell swelling by ouabain, which is the well-known inhibitor of Na+, K+-ATPase, suggested to be due to decreasement of K+ influx following diminishment of Na+, K+-ATPase activities.

  • PDF

Calcium-activated Ionic Currents in Smooth Muscle Cells from Rabbit Superior Mesenteric Artery

  • Lee, Moo-Yeol;Bang, Hyo-Weon;Uhm, Dae-Yong;Rhee, Sang-Don
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.151-157
    • /
    • 1994
  • Intracellular free $Ca^{2+}$ contributes to regulation of various events occurring in vascular smooth muscle cells. One of these events is modulating the membrane iou currents. Single smooth muscle cells were isolated from rabbit mesenteric artery. Three kinds of $Ca^{2+}-activated\;current$ were studied with the patch clamp method. $Ca^{2+}-activated\;K^+\;current$ with a large oscillation was recorded in the depolarized potential range. The single channel conductance of this current was about 250 pS. It was abolished by replacing intracellular $K^+\;with\;Cs^+$. A $Ca^{2+}-activated$ nonselective cation current was observed in both the depolarized and hyperpolarized potential ranges. And it was blocked by replacement of extracellular $Na^+$ with N-methylglucamine (NMG) or extracellular application of $Cd^{2+}$. $Ca^{2+}-activated\;Cl^-\;current$ was revealed in the whole voltage range and was blocked by niflumic acid. These results indicate that at least three kinds of $Ca^{2+}-activated$ ionic currents exist in smooth muscle cells from rabbit superior mesenteric artery.

  • PDF

A Study On The Characteristics Of The Medium Voltage Power Distribution Line Channel By Wideband Channel Impulse Response Measurement Using PN Sequence (PN 시퀀스 방식의 광대역 임펄스 응답 측정을 통한 고압 배전선로 채널 특성 연구)

  • Oh, Hui-Myoung;Choi, Sung-Soo;Lee, Jae-Jo;Kim, Kwan-Ho;Whang, Keum-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2646-2648
    • /
    • 2004
  • 전력선 통신(Power-Line Communi-cation)에 있어서 전력선은 유선 매체임에도 불구하고 수많은 분기 및 부하접속, 그리고 상호간의 임피던스 부정합에 의해 무선 통신 채널 환경과 같은 다중 경로 페이딩 특성을 갖게 된다. 따라서 채널의 다중경로 해석이 상당히 중요하며, 실제 전력선 통신 채널 연구 분야에서 신호 송수신단 사이의 임펄스 응답 측정을 바탕으로 다중경로를 분석하는 방안이 적용되고 있다. PN 시퀀스를 이용한 광대역 임펄스 응답 측정 방식은 무선 채널 환경에 대해 개발되었으나, 현재는 무선 채널은 물론 전력선 채널과 같은 유선 채널에서도 적용되고 있다. 게다가 고압 배전선로와 같이 다중 경로를 포함하는 장거리 통신채널은 PN 시퀀스 방식이 여러 가지 면에서 효율적이다[1]. 본 논문에서는 PN 시퀀스 방식의 광대역 임펄스응답 측정 방법을 통해 고압 배전선로 채널의 다중경로 특성을 측정, 검토하고 이를 제시하였다.

  • PDF

Chemical Solution Deposition of InGaZnO Thin Films As Active Channel Layers of Thin-Film Transistors

  • Son, Dae-Ho;Kim, Jung-Hye;Kim, Dae-Hwan;Sung, Shi-Joon;Jung, Eun-Ae;Kang, Jin-Kyu;Ha, Ki-Ryong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.927-930
    • /
    • 2009
  • We studied the solution processes of IGZO thin films and investigated the electrical characteristics of thin film transistor (TFT) with sol-gel processed InGaZn-oxide active semiconductor layer. In particular, the effect of composition variation and post annealing temperature were studied by using solutions having various metal cation ratios to optimize transistor performance.

  • PDF

Overexpression of TRPM7 is Associated with Poor Prognosis in Human Ovarian Carcinoma

  • Wang, Jing;Xiao, Ling;Luo, Chen-Hui;Zhou, Hui;Hu, Jun;Tang, Yu-Xi;Fang, Kai-Ning;Zhang, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.3955-3958
    • /
    • 2014
  • Background: The melastatin-related transient receptor potential 7 channel (TRPM7) is a nonselective cation channel that has been shown to promote tumor metastasis and progression. In this study, we determined the expression of TRPM7 in ovarian carcinomas and investigated its possible prognostic value. Materials and Methods: Samples were collected from 138 patients with ovarian cancer. Expression of TRPM7 was assessed by real-time PCR and immunohistochemistry, expressed with reference to an established scoring system and related to clinical pathological factors. Kaplan-Meier survival analysis was applied to estimate disease-free survival (DFS) and overall survival (OS). Univariate and multivariate cox regression analyses were performed to correlate TRPM7 expression levels with DFS and OS. Results: TRPM7 was highly expressed in ovarian carcinoma and significantly associated with decreased disease-free survival (DFS: median 20 months vs. 42 months, P=0.0002) and overall survival (OS: median 27 months vs. 46 months, P<0.001). Conclusion: Overexpression of TRPM7 expression is significantly associated with poor prognosis in patients with ovarian cancer.

The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1

  • Lee, Run-Jeoung;Shin, Sung-Hwa;Chun, Jae-Sun;Hyun, Sung-Hee;Kim, Yang-Mi;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.99-114
    • /
    • 2010
  • With the consensus sequence information of the serum glucocorticoid-induced protein kinase-1 (SGK1) phosphorylation site {R-X-R-X-X-(S/T)$\Phi$; where $\Phi$ is any hydrophobic amino acid}, we noticed that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, harbors the putative SGK1 phosphorylation site (on its Ser 824). We have demonstrated that TRPV4 is an SGK1 authentic substrate protein, with the phosphorylation on the Ser 824 of TRPV4 by SGK1. Further, using TRPV4 mutants (S824A and S824D), we noted that the modification of the Ser 824 activates its $Ca^{2+}$ entry, and sensitizes the TRPV4 channel to 4-$\alpha$-phorbol 12,13-didecanoate (4-${\alpha}PDD$) or heat, simultaneously enhancing its active state. Additionally, we determined that the modification of the Ser 824 controls both its plasma membrane localization and its protein interactions with calmodulin. Thus, we have proposed herein that phosphorylation on the Ser 824 of TRPV4 is one of the control points for the regulation of its functions.

Effects of Leejung-tang, Rikkunshito, and Bojungikgi-tang on Transient Receptor Potential Vanilloid 4 Channels (이중탕, 육군자탕, 보중익기탕의 이상지질혈증 및 고혈압과 관련된 일과성 수용체 전압 바닐로이드 4 이온통로 조절에 관한 연구)

  • Kim, Byung Joo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.57-63
    • /
    • 2018
  • Objectives: Metabolic syndrome is defined by a cluster of major cardiovascular risk factors: obesity, insulin resistance, dyslipidemia, and arterial hypertension. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential vanilloid 4 (TRPV4) channels have been associated with the development of dyslipidemia and hypertension. The purpose of this study was to investigate the effects of Leejung-tang (Lizhong-tang), Rikkunshito, and Bojungikgi-tang (Buzhongyiqi-tang) on TRPV4 channel. Methods: Human embryonic kidney 293 cells stably transfected with the TRPV4 expression vectors were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, $5{\mu}g/mL$ blasticidin, and 0.4 mg/mL zeocin in a humidified 20% $O_2/10%$ $CO_2$ atmosphere at $37^{\circ}C$. Whole-cell patch clamp recordings were obtained using an Axopatch 700B amplifier and pClamp v.10.4 software (Molecular Devices, San Jose, CA, USA), and signals were digitalized at 5 kHz using Digidata 1422A. Results: Leejung-tang and Rikkunshito (10, 30 and 50 mg/mL) had no effects on the TRPV4 whole-cell currents at dose dependent manner. However, Bojungikgi-tang (10, 30, and 50 mg/mL) inhibited the TRPV4 whole-cell currents in a dose dependent manner and the half maximal inhibitory concentration (IC50) of Bojungikgi-tang was 18.2 mg/mL. Conclusions: These results suggest that Bojungikgi-tang plays an important roles to inhibit the TRPV4 channel, suggesting that Bojungikgi-tang is considered one of the candidate agents for the treatment of metabolic syndrome such as dyslipidemia and hypertension.