• Title/Summary/Keyword: cation adsorption selectivity

Search Result 18, Processing Time 0.018 seconds

Selective Adsorption of NH4+ and Cu2+ on Korean Natural Zeolite in Their Dilute Solutions

  • Kang, Shin Jyung
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.25-28
    • /
    • 1999
  • For investigating the effectiveness of Korean natural zeolite for removal of $NH_4{^+}$ in waste waters containing $NH_4{^+}$ and $Cu^{2+}$, the adsorption of $NH_4{^+}$ and $Cu^{2+}$ by three Korean natural zeolite samples, which contained mordenite and/or clinoptilolite, was measured by adding solutions containing $NH_4{^+}$ and $Cu^{2+}$ or both at a concentration range from 1 to 7 mmol(+)/L of each cation. In the solutions, the zeolite samples adsorbed more amounts of $NH_4{^+}$ than $Cu^{2+}$. By seven successive equilibrations, Korean natural zeolites adsorbed $NH_4{^+}$ corresponding to 23~33% of those cation exchange capacity from the solution containing both $NH_4{^+}$ and $Cu^{2+}$ at 3 mmol(+)/L of each cation. Whereas, the corresponding adsorption of $Cu^{2+}$ was 17-27% of the CEC. Korean natural zeolite exhibited selectivity for $NH_4{^+}$ but not for $Cu^{2+}$. Nevertheless, it using as a soil amendment after removing of $NH_4{^+}$ in waste waters should be carefully controlled on the application rate.

  • PDF

Characteristics of Cation Selectivity for Equilibrium and Column Cation Exchanges (평형 및 칼럼교환에서 양이온 선택도 특성)

  • 이석중;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.156-159
    • /
    • 2002
  • Ion exchange is the most reliable process to remove the ionic impurities and the economic operation. ion exchange is widely used in water and wastewater treatment, especially softening and demineralization. ion selectivity depends on the hydrated radius, charge of ions and concentration. The objective of this study was to determine the selectivity order of cations with equilibrium and column ion exchanges and to investigate the effect of the background anion on selectivity. Cation selectivity increases with decreasing concentration and increasing charge ( $H^+$ < $K^+$ << $Cu^{2+}$ < $Co^{2+}$ < TEX>$Ca^{2+}$ << $Ce^{3+}$)in equilibrium and column cation adsorptions.

  • PDF

Ion Exchange Modeling in ETA and NH$_3$ Aqueous Solutions (ETA 및 암모니아 수용액에서 이온교환 모델링)

  • 안현경;김상대;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.307-311
    • /
    • 2003
  • The test did for the determine the optimized ratio of cation to anion in mixed ion exchange demineralizers. Binary, ternary, quaternary, and quinary cation and anion adsorption was performed to develop a comprehensive experimental data set from small-volume batch tests to obtain the selectivity coefficients of many cations and anions. The quantitative run time might be estimated by such ion exchange models as semi-empirical mass action and surface complexation models. The demineralizer can be used longer by increasing the ratios of cation to anion exchange resins in the bed.

  • PDF

Adsorption Characteristics of Ni, Co and Ag Ions on The Cation Exchange Resin of Demineralization Process in Primary Coolant System of PWR (원자로 일차 냉각제 계통내 탈염공정의 양이온 교환수지상에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 흡착 특성)

  • Yang, Hyun S.;Kim, Young H.;Kang, Duck W.;Sung, Ki B.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.51-57
    • /
    • 1999
  • Adsorption characteristics of Ni(II), Co(II) and Ag(I) ions on the Amberite IRN 77 cation exchange resin have been studied to suggest the guide-line for the optimum operation of demineralization process in primary coolant system during the shut-down period of pressurized water reactor(PWR). The adsorption mechanism of each metal ion, Ni(II), Co(II) or Ag(I) ion, on a cation exchange resin was well coincided with Langmuir isotherm. The adsorption and treatment capacities of $H^+$-form resin were higher than those of $Li^+$-form resin. In the continuous ion exchange process for the solution of multi-component system, the selectivity of the resin was in increasing order of Ni(II)${\approx}$Co(II)>Ag(I). In addition, the increase of the flow rate decreased the treatment capacity of the resin as well as the slope of the breakthrough curve.

  • PDF

Ion Exchange Modeling with Mass Action Law and Surface Complexation Models (질량작용법칙과 표면착화모델을 이용한 이온교환 모델링)

  • 안현경;김상대;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.296-300
    • /
    • 2003
  • A large equilibrium and kinetic data set for multi-component cation exchanges was obtained and tested with mass action law and surface complexation model. The systematic batch equilibrium and column experiments of cation adsorption were conducted for binary, ternary, quaternary, and quinary cation exchanges involving $ H^{+}, Li^ {+}, Na^{+}, NH$_4$^{+}, Mg^{2+} $ on a strongly acidic cation exchange resin IRN 77. The mass action law and surface complexation model were tested against both data set to investigate the consistency of ion selectivity and their predictability for competitive cation exchanges. Surface complexation model provided more accurate predictions for both equilibrium and kinetic experimental data than mass action model.

  • PDF

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (II): Adsorption Properties of Heavy Metal Ions by Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (II): 국내산 제올라이트의 중금속 이온 흡착 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.201-213
    • /
    • 2003
  • The adsorption property and ability of domestic zeolites for some heavy metal ions (Ag, Pb, Cr, Cu, Zn, Mn), which may cause a serious environmental problem in industrial wastewater, were evaluated on ore unit through a series of adsorption experiments together with careful examinations of mineral composition and properties of the zeolites. Though the adsorption behavior basically took place in the form of a cation exchange reaction, the higher CEC value does not necessarily to imply the higher adsorption capacity for a specific heavy metal. A general trend of the adsorption selectivity for heavy metals in the zeolites is determined to be as follow: $Ag\geq$Pb>Cr,Cu$\geq$Zn>Mn, but the adsorption properties of heavy metal ions somewhat depend on the species and composition of zeolite. Clinoptilolite tends to adsorb selectively Cu in case of Cr and Cu, whereas heulandite prefers Cr to Cu. A dominant adsorption selectivity of the zeolite ores for Ag and Pb is generally conspicuous regardless of their zeolite species and composition. The zeolite ores exhibit a preferential adsorption especially for $Ag^{+}$ so as not to regenerate when treated with $Na^{+}$ . In the adsorption capacity for heavy meta ions, the zeolites differ in great depending on their species: ferrierite>clinoptilolite>heulandite. Considering the CEC value of mordenite, the mordenite-rich ore appears to be similar to the clinoptilolite ore in the adsorption capacity. The adsorption capacity for heavy metals is not positively proportional to the CEC values of the zeolites measured by the exchange reaction with ammonium ion. In addition, the adsorption capacity roughly tends to depend on the zeolite contents, i.e., the grade of zeolite ore, but the trend is not consistent at all in some ores. These may be caused by the adsorption selectivity for some specific heavy metals, the presence of possible stacking micro-faults and natural cations such as K hardly to exchange in the zeolite. Considering the economic availability and functional effectiveness as natural zeolite resources, clinoptilolite ores could be applicable to utilize the domestic zeolites for the removal of heavy metals.

Adsorption Characteristics of Chemically Modified Sorbents for Carbon Dioxide (화학처리된 흡착제의 이산화탄소 흡착 특성에 관한 연구)

  • Lee, Kyung-Mi;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.533-538
    • /
    • 2008
  • In order to enhance the adsorption capacity of $CO_2$, a commercial zeolite and coal fly ash were chemically modified with alkali cations (Li, K) and alkaline-earth cations (Ca, Mg). Adsorbents containing Ca and Mg showed slightly lower surface areas. The adsorption capacity at the ambient temperature was highest with Ca, then in order of Mg, Li, and K. On the contrary, regeneration efficiency of the adsorbents with Ca and Mg was relatively low, because Ca and Mg cations had stronger affinity of carbon dioxide. The affinity between cations and $CO_2$ molecule also may improve the selectivity in favor of $CO_2$ adsorption.

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong;Zhuang, Shuting
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.328-336
    • /
    • 2020
  • Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

Competitive Adsorption in Binary Solution with Different Mole Ratio of Sr and Cs by Zeolite A : Adsorption Isotherm and Kinetics (스트론튬과 세슘 이온의 혼합 몰비를 달리한 이성분 용액에서 제올라이트 A에 의한 경쟁 흡착: 흡착등온 및 속도해석)

  • Lee, Chang-Han;Park, Jeong-Min;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.151-162
    • /
    • 2015
  • The adsorption characteristics of Sr ions and Cs ions in single and binary solution by zeolite A were investigated in batch experiment. The adsorption rate of Sr ions and Cs ions by zeolite A obeyed pseudo-second-order kinetic model in single and binary solution. The initial adsorption rates (h) and adsorption capacities of both ions obtained from pseudo-second-order kinetic model, and the values were decreased with increasing concentration of the competitive ions (0~1.5 mM). Also, adsorption isotherm data in binary solution were well fitted to the extended Langmuir model, the maximum adsorption capacities of Sr and Cs calculated from the model were 1.78 mmol/g and 1.64 mmol/g, respectively. The adsorption of Sr and Cs ions by zeolite A was carried out in the presence of other cations such as $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$. The results showed that the zeolite A can maintain a relatively high adsorption capacity for Sr and Cs ions and exhibits a high selectivity in the presence of competitive cations. The effect of competition had an order of $Ca^{2+}$ > $K^+$ > $Mg^{2+}$ > $Na^+$ for Sr ions and $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ for Cs ions at the same cation concentration.

A Study on the Methanation of Carbon Dioxide over Ni/Y-type Zeolites (Y형 제올라이트 담지 니켈촉매상에서 이산화탄소의 메탄화반응)

  • Lee, Kwan-Yong;Kim, Hyung-Wook;Kim, Geon-Joong;Ahn, Wha-Seung
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.365-372
    • /
    • 1993
  • $CO_2$ methanation was performed over Ni supported on cation-exchanged Y zeolites under atmospheric pressure at $250{\sim}550^{\circ}C$ and $H_2/CO_2$ mole ratio of 4. Adsorption strength between carbon dioxide and nickel was found to be Influenced by the cation exchanged in the zeolite. TPD(Temperature-programmed desorption) results show that the adsorption strength decreases in the order of Ni/NaY>Ni/MaY>Ni/HY. TPSR(Temperature-programmed surface reaction) results indicate that enhanced methanation activity is obtained when the adsorption strength between carbon dioxide and nickel is stroing. As the reduction temperature increases, the methantion activity of the catalyst increase. From this result the larger size nickel particle seems advantageous for $CO_2$ methanation reaction. The maximum activity is obtained when nickel loading is 3.3wt%. Carbon monoxide is produced as a by-product throughout the reaction temperature range, and as the contact time increases, the selectivity to methane increases and the selectivity to carbon monoxide decreases steadily. Thus methane seems to be produced from $CO_2$ via CO as an intermediate species. In the temperature range of $410{\sim}450^{\circ}C$, the methane production rate is found to be dependent on the orders of 3.3~-0.5 and 1.4~3.6 with respect to $CO_2$ and $H_2$ partial pressures, respectively. This clearly shows that $CO_2$ and $H_2$ are competing for adsorption sites and as the reaction temperature increases, it becomes increasingly difficult for $H_2$ to be adsorbed on the catalyst surface.

  • PDF