• Title/Summary/Keyword: cathode shape

Search Result 92, Processing Time 0.027 seconds

Fabrication of Self -aligned volcano Shape Silicon Field Emitter (음극이 자동 정렬된 화산형 초미세 실리콘 전계방출 소자 제작)

  • 고태영;이상조;정복현;조형석;이승협;전동렬
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.113-118
    • /
    • 1996
  • Aligning a cathode tip at the center of a gate hole is important in gated filed emission devices. We have fabricated a silicon field emitter using a following process so that a cathode and a gate hole are automatically aligned . After forming silicon tips on a silicon wafer, the wafer was covered with the $SiO_2$, gate metal, and photoresistive(PR) films. Because of the viscosity of the PR films, a spot where cathode tips were located protruded above the surface. By ashing the surface of the PR film, the gate metal above the tip apex was exposed when other area was still covered with the PR film. The exposed gate metal and subsequenlty the $SiO_2$ layer were selectively etched. The result produced a field emitter in which the gate film was in volcano shape and the cathode tip was located at the center of the gate hole. Computer simulation showed that the volcano shape and the cathode tip was located at the center of the gat hole. Computer simulation showed that the volcano shape emitter higher current and the electron beam which was focused better than the emitter for which the gate film was flat.

  • PDF

냉음극을 이용한 plasma전자 beam의 전기적 입력특성 II

  • 전춘생;김상현;이보호
    • 전기의세계
    • /
    • v.27 no.6
    • /
    • pp.49-53
    • /
    • 1978
  • This paper investigates on the electric input characterisitcs of plasma electron beam in H$_{2}$ gas chamber with various pressures, effected by the shape and dimension of hollow screen cathode during electron beam is formed. The result are as follows: (1)Electron beam is formed in the region of positive resistance on the characteristic curve which shows the relation between the voltage and current of electron beam, independent of the shape and dimension of hollow screen cathode. (2)At a given electron beam current, electron beam voltage increases with the decreases of hollow screen cathode length and screen mesh number of it. (3)At a given electron beam current, electron beam voltage increases with the diameters of hollow screen cathode and electron beam hole of it.

  • PDF

The effect of process parameters on copper powder particle size and shape produced by electrolysis method

  • Boz, Mustafa;Hasheminiasari, Masood
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.151-162
    • /
    • 2013
  • In this study, an electrolyzing device for the production of metal powders was designed and fabricated. The production of copper powders was performed using a variety of current densities, anode-cathode distances and power removal times. The effect of these parameters on powder particle size and shape was determined. Particle size was measured using a laser diffraction unit while the powder shape was determined by SEM. Experimental results show that an increase in current density leads to a decrease in powder particle size. In addition particle shape changed from globular dendritic to acicular dendritic with increasing the current density. Distance between the cathode and anode also showed a similar influence on powder particle size and shape. An increase in time of powder removal led to an increase in powder particle size, as the shape changed from acicular dendritic to globular dendritic.

Using Magnetic Quadrupoles in Cathode-Ray Tubes

  • Sluyterman, A.A.S.
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.30-34
    • /
    • 2002
  • CRTs can be improved by means of magnetic quadrupoles. Areas of improvement are convergence, spot shape, image-flatness and space charge compensation.

Optimization study on fuel cell cathode oxygen flow path for Unmanned Aerial Vehicle using computational visualization (전산 가시화를 통한 무인 항공기용 연료전지 양극 산소 유로 최적화 연구)

  • Jeon, Ji-A;Lee, Jae-Jun;Song, Young-Su;Kim, Min-Su;Kim, Gun Woo;Na, Youngseung;Rhee, Gwang Hoon
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • Numerical visualization is conducted to confirm the variation of flow characteristics and pressure drop by the shape of channels on the cathode flow path in hydrogen fuel cells for unmanned aerial vehicles(UAVs). Generally, a light-weight fan is commonly used rather than a heavy air compressor at UAVS. However, in case of blower fan, a large pressure drop in the flow path causes the blocking of the oxygen supply to the fuel cell. Therefore, the uniformity of flow inside the cathode has to be achieved by changing the shape of the cathode. The flow channel, the duct shape, and the diameter of the fan are changed to optimize the flow path. As a result, it is confirmed that the optimal flow path can decrease the velocity difference between the center and outer flow by 1.8%. However, It should be noted that the channel size can increase the pressure drop.

PM OLED Fabrication with New Method of Metal Cathode Deposition Using Shadow Mask

  • Lee, Ho-Chul;Kang, Seong-Jong;Yi, Jung-Yoon;Kim, Ho-Eoun;Kwon, Oh-June;Hwang, Jo-Il;Kim, Jeong-Moon;Roh, Byeong-Gyu;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.987-989
    • /
    • 2006
  • 1.52" $130(RGB){\times}130$ full color PM OLED device with $70\;{\mu}m{\times}210\;{\mu}m$ of sub-pixel pitch was fabricated using shadow mask method for metal cathode deposition. Instead of conventional patterning process to form cathode separator via photolithography, regularly patterned shadow mask was applied to deposit metal cathode in this OLED display. Metal cathode was patterned via 2-step evaporation using shadow mask with shape of rectangular stripe and its alignment margin is $2.5\;{\mu}m$. Technical advantages of this method include reduction of process time according to skipping over photolithographic process for cathode separator and minimizing pixel shrinkage caused by PR cathode separator as well as improving lifetime of OLED device.

  • PDF

Changes in the Shape and Properties of the Precursor of the Rich-Ni Cathode Materials by Ammonia Concentration (암모니아 농도에 따른 Rich-Ni 양극 소재의 전구체 형태와 특성 변화)

  • Park, Seonhye;Hong, Soonhyun;Jeon, Hyeonggwon;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.636-640
    • /
    • 2020
  • Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.

Effect of Double Grid Cathode in IEC Device (IEC 장치에서 이중 그리드 음극의 영향)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.51-51
    • /
    • 2010
  • We have proposed a new configuration for the improvement of neutron yield without the application of external ion sources in an inertial electrostatic confinement (IEC) device. The application of a double grid cathode to the IEC device is expected to generate a higher ion current than a single grid cathode. This paper verifies the effect of the double grid cathode by both fluid and particle simulation. Through the fluid simulation the optimal shape and applied voltage of the double grid cathode is determined, and through the particle simulation the usefulness of that is confirmed.

  • PDF

ANODE HEATING AND MELTING IN THE ARGON GTA

  • Terasaki, Hidenori;Tanaka, Manabu;Fujii, Hidetoshi;Ushio, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.746-751
    • /
    • 2002
  • In order to make clear the physical relation among the arc plasma, the anode heat transfer and the weld penetration, the results of experimental measurements of temperatures of arc plasma, the distributions of heat input and current on the anode and the weld penetration were presented The experimental results showed that the electron temperature above the anode and current and heat input density on the anode was dominated by the position of the cathode. Furthermore, it was showed that electron temperature of arc plasma was dominated by the cathode shape. These results were related with the results of the welded penetration measurements. As a result, it was showed that the electron temperature above the anode and current density distribution on the anode decided the heat input density distribution on the anode and that the heat input density on the anode remarkably dominated the size of the weld penetration in argon GTA welding process. Furthermore, it was suggested that the cathode played the important role in the determination of the weld penetration in argon GTA welding process.

  • PDF

Synthesis of Li-rich Cathode Material with Spherical Shape and High Crystallinity by Using Flame Spray Pyrolysis (화염분무열분해법을 이용한 구형의 고결정성 리튬 과잉 양극재 제조)

  • Sung Nam Lim
    • New & Renewable Energy
    • /
    • v.20 no.3
    • /
    • pp.20-27
    • /
    • 2024
  • A Li-rich cathode material, Li1.167Mn0.548Ni0.18Co0.105O2, with a spherical shape and high crystallinity, is prepared using flame spray pyrolysis. The post-heat treatment condition influences the properties of the prepared material, such as its structure, morphology, and chemical composition, and optimum performance is achieved at 900℃. Various excess Li contents (0-12 wt.%) are introduced in the precursor solution to compensate for volatilized Li during synthesis, bringing it close to the target composition. Compensation for volatilized Li enhances the electrochemical performance, i.e., the Li-compensated sample shows a good discharge capacity of 247 mAh g-1 at a current density of 20 mA g-1 in a potential window of 4.6-2.5 V. In addition, the prepared Li-rich cathode material supplemented with 9 wt.% of the Li source shows increased discharge capacity of 175 and 148 mAh g-1 at 200 and 400 mA g-1, respectively, compared with those of a bare sample (164 and 127 mAh g-1, respectively).