• Title/Summary/Keyword: catechol 2

Search Result 295, Processing Time 0.022 seconds

Cloning of phnQ Gene Encoding Extradiol Dioxygenase from Pseudomonas sp. DJ77 and Its Expression in Escherichia coli (Pseudomonas sp. DJ77 균주에서 Extradiol Dioxygenase를 암호화하는 phnQ 유전자의 클로닝과 대장균에서의 발현)

  • 신희정;박용춘;민경희;김치경;임재윤;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.1
    • /
    • pp.22-26
    • /
    • 1997
  • We cloned the 5~kb Xlwl fragment containing gene responsible for degrad"tion of phenanthrene using pBLUES~ CRIPT SK( +) vector and E. coli XLI-Blue strain from the genomic library of Pseudomonas sp. 0177 and this recombinant plasmid was named pUPX5. The strain containing pUPX5 could produce a yellow meta-cleavage product using 2.3-dihydroxybiphenyl as a substrate. This strain have a higher activity toward 2,3-dihydroxybiphenyl than catechol. We sub cloned and localized the gene encoding 2.3-dihydroxybiphenyl-1.2-dioxygenase. which is designated as phn$\Omega$.

  • PDF

Oxidative Coupling of Herbicide Propanil and Its Metabolite, DCA(3,4-dichloroaniline) to Humic Monomers (제초제 Propanil 및 그 분해산물인 DCA(3,4-dichloroaniline)와 Humic Monomer들과의 산화적 짝지움반응)

  • Kwon, Tae-Dong;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.384-389
    • /
    • 1998
  • The herbicide propanil and its metabolite, DCA were incubated with oxidative catalysts in the presence or absence of humic monomers to evaluate the incorporation of them into humic substances. Propanil and DCA underwent little or no transformation by oxidatve catalysts in the absence of humic monomers. In the presence of humic monomers, the most effective co-substrate for transformation of propanil was syringic acid by laccase and HRP, that of DCA was catechol by laccase and HRP, and protocatechuic acid by birnessite. The transformation of DCA was the highest when it was incubated with catechol at pH 8.0 during 24 hrs by laccase, and with catechol at pH 3.0 during 2 hrs by HRP, and with protocatechuic acid at pH 5.0 during 2 hrs by birnessite. The DCA transformation increased with increasing concentration of humic monomers. The transformation of DCA was increased with about 5 times when it was incubated with lactase and birnessite together than lactase alone, but that of it was not effected when it was incubated with HRP and birnessite together. When DCA was incubated with dissolved organic carbon in the presence of oxidative catalysts, the transformation of it was not increased by laccase and birnessite but increased by HRP.

  • PDF

Isolation and Characterization of a Phenol-Degrading Strain Acinetobacter sp.GEM2 (Phenol을 분해하는 Acinetobacter sp. GEM2의 분리 및 특성)

  • Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Tae-Jong;Kwon, Gi-Seok;Lee, Sung-Gie;Suh, Hyun-Hyo;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.692-699
    • /
    • 1994
  • A bacterial strain which formed a distinct colony on agar plate containing phenol as a vapor phase and grew well in a liquid minimal medium was isolated and identified as Acinetobac- ter sp. GEM2. The optimal temperature and initial pH for the growth of Acinetobacter sp. GEM2 were 30$\circ$C and 7.0, respectively. Cell growth was inhibited by phenol at the concentration over 1500 ppm. Cell growth dramatically increased from 10 hours after cultivation and almost showed a stationary phase within 24 hours at which 95% of phenol was concomitantly degraded. Acinetobac- ter sp. GEM2 was capable of growing on aromatic compounds, such as benzoic acid, phenol, m- cresol, o-cresol, P-cresol, catechol, gentisic acid, and toluene, but did not grow on benzene, salicylic acid, p-toluic acid, and p-xylene. By the analysis of catechol dioxygenase, it seemed that catechol was degraded through both meta- and ortho-cleavage pathway. The growth-limiting log P value of Acinetobacter sp. GEM2 on organic solvents was 2.0.

  • PDF

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria (3,4-Dichloroaniline 분해 미생물의 분리 및 특성)

  • Kim, Young-Mog;Park, Kun-Ba-Wui;Kim, Won-Chan;Han, Won-Sub;Yu, Choon-Bal;Rhee, In-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.245-249
    • /
    • 2007
  • Chloroanilines are widely used in the production of dyes, drugs and herbicides. Chloroanilines, however, are considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. With the increase of necessity of bioremediation, this study was conducted to isolate the chloroanilines-degrading bacteria. A bacterium capable of growth on 3,4-dichloroaniline (DCA) was isolated by the 3,4-DCA-containing enrichment culture. The strain KB35B was identified as Pseudomonas sp. and also able to degrade several chloroanilines. The isolated strain showed high level of catechol 2,3-dioxygenase activity in the presence of 3,4-DCA. The activity of catecho1 2,3-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation. The activity toward 4-methykatechol was 60.6% of that of catechol, while the activity toward 3-methylcatechol and 4-chlorocatechol were 27.0 and 13.5%, respectively.

Catechol-O-Methyltransferase Activity in Cholestatic Rat's Liver Induced by Bile Duct Ligation

  • Mun, Kyo-Cheol
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.142-145
    • /
    • 1996
  • To investigate the cause of increased plasma catecholamine levels in liver disease, catechol-O-methyltransferase (COMT), which provides a major route of catabolism for circulating catecholamines, was studied under the cholestasis induced by mechanical biliary obstruction in rats. Monoamine oxidase (MAO) activity and the $K_m$ and $V_{max}$ values for both enzymes were also measured. Cytosolic, microsomal, and mitochondrial COMT activities in the cholestatic liver were significantly decreased throughout the experiment. Microsomal, and mitochondrial MAO activity in the cholestatic liver were also significantly decreased. Vmax values of COMT and MAO were lower. Serum COMT and MAO activities were detected after CBD ligation. These results indicate that plasma catecholamine levels are increased in liver disease due to decreased hepatic degradation of catecholamines by decreased activities of COMT and MAO. The decreased activity of these enzymes is caused by decreased biosynthesis and by flowage into the blood from the damaged hepatocyte.

  • PDF

Synthesis and Biological Studies of Catechol Ether Type Derivatives as Potential Phosphodiesterase (PDE) IV Inhibitors

  • Rhee, Chung K.;Kim, Jong-Hoon;Suh, Byung-Chul;Xiang, Myung-Xik;Youn, Yong-Sik;Bang, Won-Young;Kim, Eui-Kyung;Shin, Jae-Kyu;Lee, Youn-Ha
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.202-207
    • /
    • 1999
  • New series of catechol ether type derivatives 5, 6 have been synthesized and applied to biological tests. Even though it is ap preliminary data, some of our target molecules show the promising result against PDE IV inhibition. SAR and biological studies with studies with synthetic compounds will be discussed in detail.

  • PDF

Studies on Pyrocatechase from a Soil Bacterium (Ⅰ). Purification and Characterization of Pyrocatechase (토양 박테리아로부터의 Pyrocatechase 에 관한 연구 (제1보). 효소정제와 특성연구)

  • Yeon-Bo Chung;Hyun-Jae Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.25-33
    • /
    • 1980
  • Pyrocatechase as a phenolytic dioxygenase was extracted from the benzoate-induced cells of a soil bacterium, a member of Pseudomonadaceae, and purified partially by DEAE-cellulose ion-exchange chromatography and Sephadex G-75 gel filtration. Final preparation of the enzyme yielding 200 fold purification over the crude extracts showed a specific activity of about 40 ${\mu}moles$ per minute per mg protein based on catechol as the substrate. The enzyme showed a very limited substrate specificity towards catechol for its catalytic activity. Based on the inhibition study with the substrate analogues, it was assumed that ortho dihydroxy groups on the aromatic ring may participate in the enzyme-substrate binding. The $K_m$ value for catechol was obtained as $1.9{\times}10^{-6}M$, and the optimum activity of the enzyme was obtained at the pH range of 7∼10 and $35^{\circ}C$. With SH-group blocking agents the enzyme was inhibited seriously. The activity of enzyme was also inhibited by the addition of some heavy metals, $Ag^+$ and $Cu^{2+}$, but was not affected by EDTA. General property of the enzyme was characterized and the possible nature of the enzyme active center was also discussed.

  • PDF

Reaction Characteristics of 4-Methylcatechol 2,3-Dioxygenase from Pseudomonas putida SU10

  • Ha, You-Mee;Jung, Young-Hee;Kwon, Dae-Young;Kim, Young-Soo;Kim, Chy-Kyung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • Reaction characteristics of 4-methylcatechol 2,3-dioxygenase (4MC230) purified from Pseudomonas putida SU10 with a higher activity toward 4-methylcatechol than catechol or 3-cethylcatechol were studied by altering their physical and chemical properties. The enzyme exhibited a maximum activity at pH 7.5 and approximately 40% at pH 6.0 for 4-methylcatechol hydrolysis. The optimum temperature for the enzyme was around $35^{\circ}C$, since the enzyme was unstable at higher temperature. Acetone(10%) stabilized the 4MC230. The effects of solvent and other chemicals (inactivator or reactivator) for the reactivation of the 4MC230 were also investigated. Silver nitrate and hydrogen peroxid severely deactivated the enzyme and the deactivation by hydrogen peroxide severely deactivated the enzyme and the deactivation by hydrogen peroxide was mainly due to the oxidation of ferrous ion to ferric ion. Some solvents acted as an activator and protector for the enzyme from deactivation by hydrogen peroxide. Ascorbate, cysteine, or ferrous ion reactivated the deactivated enzyme by hydrogen peroxide. The addition of ferrous ion together with a reducing agent fully recovered the enzyme activity and increased its activity abut 2 times.

  • PDF

Whitening Effects of Adamantyl Benzamide Derivatives (Adamantyl Benzamide 유도체의 미백효과)

  • Baek, Heung Soo;Ahn, Soo Mi;Woo, Byoung Young;Cho, Young Seok;Choi, Soo Jeong;Rho, Ho Sik;Byoun, Kyoung Hee;Shin, Song Seok;Park, Young Ho;Joo, Yung Hyup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The structure activity relationship of polyhydroxylated benzamide derivatives for whitening effects was examined. The adamantyl benzamide derivatives with catechol (3,4-dihydroxyphenyl) of B-ring part showed good anti-melanogenesis activity, but the inhibitory activity of mono-hydroxyphenyl (3-OH or 4-OH) or 3,4-dimethoxyphenyl substituted derivatives was decreased or lost. Therefore the catechol unit was appeared to be the crucial factor for the inhibition of melanogenesis. And the existence of 2-OH of A-ring part had minor influence on the activity, the length of carbon chain between A-ring and B-ring was also not the major factor for the anti-melanogenesis activity.

Characteristics of Catechol 2,3-Dioxygenase Produced by 4-Chlorobenzoate-degrading Pseudomonas sp. S-47

  • Kim, Ki-Pil;Seo, Dong-In;Min, Kyung-Hee;Ka, Jong-Ok;Park, Yong-Keun;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.295-299
    • /
    • 1997
  • Pseudomonas sp. S-47 is capable of transforming 4-chlorobenzoate to 4-chlorocatechol which is subsequently oxidized bty meta-cleavage dioxygenase to prodyce 5-chloro-2-hydroxymuconic semialdehyde. Catechol 2,3-dioxygenase (C23O) produced by Pseudomonas sp. S-47 was purified and characterized in this study. The C23O enzyme was maximally produced in the late logarithmic growth phase, and the temperature and pH for maximunm enzyme activity were $30{\sim}35^{\circ}C$ and 7.0, respectively. The enzyme was purified and concentrated 5 fold from the crude cell extracts through Q Sepharose chromatography and Sephadex G-100 gel filtration after acetone precipitation. The enzyme was identified as consisting of 35 kDa subunits when analyzed by SDS-PAGE. The C23O produced by Pseudomonas sp. S-47 was similar to Xy1E of Pseudomonas putida with respect to substrate specificity for several catecholic compounds.

  • PDF