Browse > Article

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria  

Kim, Young-Mog (Faculty of Food Science and Biotechnology, Pukyong National University)
Park, Kun-Ba-Wui (South Sea Fisheries Research Institute, National Fisheries Research & Development Institute)
Kim, Won-Chan (Department of Agricultural Chemistry, Kyungpook National University)
Han, Won-Sub (Department of Agricultural Chemistry, Kyungpook National University)
Yu, Choon-Bal (Department of Food Engineering, Daegu University)
Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.3, 2007 , pp. 245-249 More about this Journal
Abstract
Chloroanilines are widely used in the production of dyes, drugs and herbicides. Chloroanilines, however, are considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. With the increase of necessity of bioremediation, this study was conducted to isolate the chloroanilines-degrading bacteria. A bacterium capable of growth on 3,4-dichloroaniline (DCA) was isolated by the 3,4-DCA-containing enrichment culture. The strain KB35B was identified as Pseudomonas sp. and also able to degrade several chloroanilines. The isolated strain showed high level of catechol 2,3-dioxygenase activity in the presence of 3,4-DCA. The activity of catecho1 2,3-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation. The activity toward 4-methykatechol was 60.6% of that of catechol, while the activity toward 3-methylcatechol and 4-chlorocatechol were 27.0 and 13.5%, respectively.
Keywords
3,4-Dichloroaniline; Pseudomonas sp.; biodegradation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Aoki, K., K. Konohana, R. Shinke, and H. Nishira. 1984. Purification and characterization of catechol 1,2-dioxygenase from aniline-assimilating Rhodococcus erythropolis AN-13. Agric. Biol. Chem. 48: 2087-2095   DOI
2 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmid. J. Mol. Biol. 166: 557-580   DOI
3 Park, D. W., J. H. Lee, D. H. Lee, K. Lee, and C. K. Kim. 2003. Sequence characteristics of xyl JQK genes reponsible for catechol degradation in benzoate-catabolizing Pseudomonas sp. S-47. J. Microbiol. Biotechnol. 13: 700-705   과학기술학회마을
4 Sutherland, T. D., I. Home, M. J. Lacey, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66: 2822-2828   DOI
5 Motonaga, K., K. Tagagi, and S. Matumoto. 1996. Biodegradation of chlorothalonil in soil after suppression of degradation. BioI. Fertil. Soils 23: 340-345   DOI
6 Sambrook, L, E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning, a laboratory maual. 2nd ed. cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
7 Gheewala, S. H. and A. P. Annachhatre 1997. Biodegradation of aniline. Water Sci. Technol. 36: 53-63
8 Dunbar, J., L. O. Ticknor, and C. R. Kuske. 2000 Assessment of Microbiol diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Envir Microbiol. 66: 2943-2950   DOI
9 Kearny, P. C. and D. D. Kaufman. 1975. In: Herbicides: Chemistry. Degradation and Mode of action. Marcel Dekker, New York
10 Nakanishi, Y, S. Murakami, R. Shinke, and K. Aoki. 1991. Induction, purification, and characterization of catechol 2,3-dioxygenase from aniline-assimilating Pseudomonas sp. FK8-2. Agric. BioI. Chem. 55: 1281-1289   DOI
11 Travkin, V. M., I. P. Solyanikova, l. M.Rietjens, J. Vervoort, W. J. Berkel, and L. A. Golovleva. 2003. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas jluorescens 26-K. J. Environ. Sci. Health. 38: 121-132   DOI   ScienceOn
12 Radianingtyas, H., G K. Robinson, and A. T. Bull. 2003. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology 149: 3279-3287   DOI
13 Lee, J. S., E. J. Kang, M. O. Kim, D. H. Lee, K. S. Bae, and C. K. Kim 2001. Identification of Yarrowia lipolytica Y103 and its degradability of phenol and 4-chlorophenol. J. Microbiol. Biotechnol. 11: 112-117
14 Harayama, S. and M. Rekik. 1990. The rnata clevage operon of TOL degradative plasmid pWWO comprised 13 gene. Mol. Gen. Genet. 221: 113-120   DOI
15 Hofer, B., S. Backhaus, and K. N. Timmis. 1994. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB4000 encodes four additional metabolic enzymes. Gene 144: 9-16   DOI   ScienceOn
16 Liu, Z., H. Yang, Z. Huang, P. Zhou, and S. J. Liu. 2002. Degradation of aniline by newly isolated, extremely anilinetolerant Delftia sp. AN3. Appl. Microbiol. Biotechnol. 58: 679-682   DOI   ScienceOn
17 Uozurni, T., T. Hoshino, K. Miwa, S. Horinouchi, T. Beppu, and K. Arima. 1977. Restriction and modification in Bacillus species. Genetic transformation of bacteria with DNA from different species. Part I. Mol. Gen. Genet. 152: 525-538
18 Na, K., S. Kim, M. Kubo, and S. Chung. 2001. Cloning and phylogenetic analysis of two diferent bphC genes and bphD gene from PCB-degrading bacterium, Pseudomonas sp. strain SY5. J. Microbiol. Biotechnol. 11: 668-676   과학기술학회마을
19 Tixier, C, M. Sancelme, S. Ait-Aissa, F. Bonnemoy, A. Cuer, N. Truffaut, and H. Veschambre. 2002. Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46: 519-526   DOI   ScienceOn