• 제목/요약/키워드: catechin glycoside

검색결과 14건 처리시간 0.017초

수목 추출성분을 이용한 식품포장용 골판지 천연 방충처리제 개발 (A Study on the Natural Insectifuge for Food Wrapping Corrugated Board Using Tree Extractives)

  • 배영수
    • 임산에너지
    • /
    • 제20권2호
    • /
    • pp.9-19
    • /
    • 2001
  • 본 연구는 식품포장용 골판지에 사용되는 유기합성 구충제를 대체할 수 있는 천연 구충물질을 탐색하기 위하여 수목의 잎이나 수피 또는 목질부에서 화학성분을 추출하고 그 추출물에 대하여 화락곡나방 유충을 이용한 기피시험을 수행하였다. 아까시나무 목질부와 현사시나무, 수양버들 및 버드나무 수피, 그리고 주목과 비자나무의 잎을 채취하여 아세톤-물(7:3)의 흔합액으로 추출하고 hexane, CH₂Cl₂ ethylacetate(EtOAc)와 물로 분획하여 동결 건조한 후 Sephadex LH-20 칼럼에서 크로마토그래피를 수행하였으며 단리된 물질들은 NMR 및 MS 분석에 의하여 그 구조를 결정하였다. 각 수종의 EtOAc 또는 수용성 분획은 2% 또는 3% 농도로 인쇄용 잉크에 흔합되어 상업용 골판지에 인쇄하고 이를 기피시험을 위한 재료로 사용하였다. 아까시나무 EtOAc용성 분획에서는 robtin과 dihydrorobinetin이, 수용성 분획에서는 leucorobinetinidin이 단리되었으며 현 사시나무 수피의 EtOAc용성 분획은 (+)-catechin, naringenin, aromadendrin, eriodictyol, sakuranetin 및 그 배당체, taxifolin, neosaturanin, p-coumaric acid 및 salireposide 그리고 수용성 분획에서는 aesculin을 단리하였다. 버드나무 수피의 EtOAc용성 분획에서는 다량의 (+)-catechin 이외에 (+)-gallocatechin 및 p-coumaric acid가 분리되었으며 수양버들 수피의 EtOAc용성 분획에서도 (+)-catechin, (+)-gallocatechin, dihydromyricetin 및 myricetin등이 단리되었다.

  • PDF

Evaluation of Skin Sebosuppression by Components of Total Green Tea (Camellia sinensis) Extracts

  • Kim, Jeong-Kee;Shin, Hyun-Jung;Lee, Byeong-Gon;Lee, Sang-Jun
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.464-469
    • /
    • 2008
  • In human beings, it is known that there is a correlation between the occurrence of acne and the ability to suppress sebum. Sebosuppression may be related to the inhibition of sebocyte proliferation, differentiation, and lipogenesis in sebaceous glands. To investigate the skin sebosuppressive activity of green tea extract, the in vivo effects of its flavonoid compounds on the androgen-dependent stimulation of pigmented macules in hamsters and performed in vitro experiments with human primary sebocytes were examined. Our results imply a dual activity of skin sebosuppression by green tea flavonoids; some catechins including epigallocatechin-3-gallate (EGCG) and gallocatechin-3-gallate (GCG) may reduce the differentiation of sebocytes by inhibiting PPAR-${\gamma}1$ mRNA expression, whereas some flavonol glycosides including kaempferol may inhibit lipogenesis in sebaceous glands by decreasing levels of the mature form of sterol-sensitive response elements binding protein-1c (SREBP-1c). Therefore, green tea is a potentially effective material for use in the development of health foods or cosmetics for skin sebosuppression.

Characterization of Low Molecular Weight Polyphenols from Pine (Pinus radiata) Bark

  • Mun, Sung-Phil;Ku, Chang-Sub
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.424-430
    • /
    • 2006
  • Low molecular weight polyphenols were isolated from hot water extracts of radiata pine (Pinus radiata) bark using a Sephadex LH-20 column and characterized by $^1H$ and $^{13}C$ NMR, UV, FT-IR, and GC-MS analyses. Major compounds isolated and identified were protocatechuic acid, trans-taxifolin, and quercetin. Trans-taxifolin, an important intermediate in biosynthetic route of proanthocyanidin (PA), was isolated in large quantities and indicates that PA is a major component of radiata pine bark. Small amounts of polyphenols were identified by GC-MS analysis. The presence of p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, cis- and trans-feruic acid, p-coumaric acid, trans-caffeic acid, (-)-epicatechin, (+)-catechin, trans- and cis-taxifolin, (+)-gallocatechin, and quercetin was confirmed by comparison of mass fragmentation patterns and retention times (RT) with authentic samples. In addition, the presence of astringenin, astringenin glycoside, trans- and cis-leucodelphinidin was strongly assumed from characteristic mass fragment ions due to their conjugated structure and retro Diels-Alder reaction, and also from biosynthetic route of PA. GC-MS analysis allowed us to detect small amounts of phenolic acids and flavonoids and eventually discriminate trans- and cis-configuration in the identified polyphenols.

A Novel Benzoyl Glucoside and Phenolic Compounds from the Leaves of Camellia japonica

  • Cho, Jeong-Yong;Ji, Soo-Hyun;Moon, Jae-Hak;Lee, Kye-Han;Jung, Kyung-Hee;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.1060-1065
    • /
    • 2008
  • A novel benzoyl glucoside (4) and 13 known phenolic compounds were isolated from the leaves of Camellia japonica by a guided 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The structure of 4 was determined to be 4-hydroxy-2-methoxyphenol 1-O-$\beta$-D-(6'-O-p-hydroxylbenzoyl)-glucopyranoside (camelliadiphenoside). The 13 known compounds were identified as (E)-coniferyl alcohol (1), (-)-epicatechin (2), 4-hydroxyphenol 1-O-$\beta$-D-(6-O-p-hydroxybenzoyl) glucopyranoside (3), naringenin 7-O-$\beta$-D-glucopyranoside (5), quercetin 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (6), kaempferol 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (7), (+)-catechin (8), 1,6-di-O-p-hydroxybenzoyl-$\beta$-D-glucopyranoside (9), phloretin 2'-O-$\beta$-D-glucopyranoside (10), quercetin 3-O-$\beta$-D-glucopyranoside (11), quercetin 3-O-$\beta$-D-galactopyranoside (12), kaempferol 3-O-$\beta$-D-galactopyranoside (13), and kaempferol 3-O-$\beta$-D-glucopyranoside (14). Their chemical structures were determined by the spectroscopic data of fast atom bondardment mass spectrometry (FABMS) and nuclear magnetic resonance (NMR). Flavonoids having the catechol moiety showed significantly higher DPPH radical scavenging activity than other isolated compounds having monohydroxy phenyl group.