• Title/Summary/Keyword: catalytic site

Search Result 303, Processing Time 0.03 seconds

Purification and the Catalytic Site Residues of Pseudonomas fragil Lipase Expressed in Escherichia coli

  • Kim, Tae Ryeon;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.401-406
    • /
    • 1995
  • The P. fragi lipase overexpressed in E. coli as a fusion protein of 57 kilodalton (kDa) has been purified through glutathione-agarose affinity chromatography by elution with free glutathione. The general properties of the purified GST-fusion protein were characterized by observing absorbance of released p-nitrophenoxide at 400 nm which was hydrolyzed from the substrate p-nitrophenyl palmitate. The optimum condition was observed at 25 $^{\circ}C$, pH 7.8 with 0.4 ${\mu}g$ of protein and 1.0 mM substrate in 0.6% (v/v) TritonX-100 solution. Also the lipase was activated by Ca+2, Mg+2, Ba+2 and Na+ but it was inhibited by Co+2 and Ni+2. pGEX-2T containing P. fragi lipase gene as expression vector was named pGL191 and used as a template for the site-directed mutagenesis by sequential PCR steps. A Ser-His-Asp catalytic triad similar to that present in serine proteases may be present in Pseudomonas lipase. Therefore, the PCR fragments replacing Asp217 to Arg and His260 to Arg were synthesized, and substituted for original fragment in pGL19. The ligated products were transformed into E. coli NM522, and pGEX-2T harboring mutant lipase genes were screened through digestion with XbaI and StuI sites created by mutagenic primers, respectively. No activity of mutant lipases was observed on the plate containing tributyrin. The purified mutant lipases were not activated on the substrate and affected at pH variation. These results demonstrate that Asp217 and His260 are involved in the catalytic site of Pseudomonas lipase.

Catalytic Activity Change of Perovskite Catalysts with A-Site Substitution (페로브스카이트 촉매에서 A-Site 치환에 따른 촉매활성 변화)

  • Hahm, Hyun-Sik;Kim, Kyu-Sung;Ahn, Sung-Hwan;Shin, Ki-Seok;Kim, Song-Hyoung;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.272-277
    • /
    • 2007
  • Catalytic activity changes of perovskite catalysts were examined with their A-site substitution. For the preparation of catalysts, Mn was used for B-site component and La, Ce, Sr, Ba, Ca, Ag were used for A-site component of the perovskite $catalysts(ABO_3)$ The effect of calcination temperature on methane combustion and perovskite structure was also investigated. The surface area and adsorbed oxygen species were tested with BET apparatus and $O_2-TPD$, respectively. Perovskite catalysts whose A-site was partially substituted needed higher calcination temperature than un-substituted one to form the perovskite structure. From $O_2-TPD$ experiment, it was found that methane combustion activity was directly related to the oxygen desorbing ability of the catalysts. The prepared catalyst(LM-7) was stable at $600^{\circ}C$ for 72 hours of reaction.

Catalytic Properties of Borosilicate in Methanol Conversion (메탄올의 전환반응에서 보로실리케이트의 촉매성질)

  • Lee, Gye Su;Jo, Min Su;Jeong, Byeong Gu;Seo, Gon
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.360-369
    • /
    • 1990
  • Borosilicate, HZSM-5 zeolite and iron-substituted borosilicate and HZSM-5 zeolite were prepared and their catalytic properties in methanol conversion were studied. The effects of strength and amount of acid site determined from TPD spectra of ammonia on the product distribution was examined. Selectivity to propylene was high over borosilicate with small amount of strong acid site, but selectivity to aromatic compound was high over HZSM-5 zeolite with large amount of the strong acid site. The participation of weak acid site on the conversion did not confirmed, and the product distribution could be explained in terms of the amount of the strong acid site. Although the amount of the weak acid site was increased by substitution of iron, there was no meaningful change in the product distribution.

  • PDF

Site-directed Mutagenesis of Arginine 13 Residue in Human Glutathione S-Transferase P1-1

  • Koh, Jong-Uk;Cho, Hyun-Young;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.772-776
    • /
    • 2007
  • In order to study the role of residue in the active site of glutathione S-transferase (GST), Arg13 residue in human GST P1-1 was replaced with alanine, lysine and leucine by site-directed mutagenesis to obtain mutants R13A, R13K and R13L. These three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. Mutation of Arg13 into Ala caused a substantial reduction of the specific activity by 10-fold. Km GSH, Km DCNB and Km EPNP values of R13A were approximately 2-3 fold larger than those of the wild type. Mutation of Arg13 into Ala also significantly affected I50 values of S-methyl-GSH that compete with GSH and ethacrynic acid, an electrophilic substrate-like compound. These results appeared that the substitution of Arg13 with Ala resulted in significant structural change of the active site. Mutation of Arg13 into Leu reduced the catalytic activity by approximately 2-fold, whereas substitution by Lys scarcely affected the activity, indicating the significance of a positively charged residue at position 13. Therefore, arginine 13 participates in catalytic activity as mainly involved in the construction of the proper electrostatic field and conformation of the active site in human GST P1-1.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Chul-Hong;Jeong, Young-Sik;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.328-334
    • /
    • 2000
  • The hybrid catalytic(catalytic+thermal) combustor of a lean methane-air mixture on platinum catalyst was investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. For the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. Thus the homogeneous reactions were important to predict the productions of CO and NOx exactly. In thermal combustor, the production of $N_2O$ was more dominant than that of NO due to the relative important of the reaction $N_2+O(+M){\to}N_2O(+M)$. Finally the production of CO and NOx by amount of methane addition were studied.

  • PDF

Catalytic Combustion of Soot Particulate over Perovskite-Type Oxides (폐롭스카이트형 촉매에서 입자상물질의 촉매연소반응)

  • Yang, Jin-Sup;Hong, Seong-Soo;Jung, Duck-Young;Oh, Kwang-Jung;Cho, Kyung-Mok;Ryu, Bong-Ki;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.803-810
    • /
    • 1998
  • We have studied the catalytic combustion of soot particulate over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxide. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studied. The effect of $SO_2$ pretreatment and water introduced into reactants were also examined. In the $LaCoO_3$ catalyst, the partial substitution of alkali metals into A site enhanced the catalytic activity in the combustion of soot particulate and the activity was shown in the order : Cs>K>Na; In the $La_{0.6}Cs_{0.4}CoO_3 $; catalyst, the substitution of Fe or Mn showed no effect on the ignition temperature. The ignition temperature decreased with increasing $O_2$ concentration and contact time. The introduction of water into reactants feed decreased the ignition temperature and the pretreatment of $SO_2$ showed no effect on the catalytic activity.

  • PDF

Purification and Crystallization of the Recombinant Catalytic Subunit of Pyruvate Dehydrogenase Phosphatase (Pyruvate Dehydrogenase Phosphatase의 Catalytic Subunit의 분리정제 및 결정화)

  • Kim, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.3
    • /
    • pp.146-152
    • /
    • 2003
  • Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial protein serine/threonine phosphatase that catalyzes the dephosphorylation and concomitant reactivation of the pyruvate dehydrogenase component of the pyruvate dehydrogenase complex (PDC). PDP consists of a catalytic subunit (PDPc, Mr 52,600) and regulatory subunit (PDPr, Mr 95,600). In the presence of $Ca^{2+}$, PDPc binds to the dihydrolipoamide acetyltransferase (E2) component of the pyruvate dehydrogenase complex in proximity to its substrate, the phosphorylated E1 component, thereby increasing the rate of dephosphorylation. PDPc possesses and intrinsic $Ca^{2+}$ binding site and a second $Ca^{2+}$ site is generated in the presence of E2. Using the unique interaction, highly pure PDPc was produced by the GSH-Sepharose-GST-L2 matrix with a specific activity of approx. 1000 U/mg and a yield of about 80%.

Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide (페롭스카이트형 산화물에서 일산화탄소에 의한 질소산화물의 환원반응)

  • Moon, Haeng-Chul;Sun, Chang-Bong;Lee, Gun-Dae;Ahn, Byuong-Hyun;Lim, Kwon-Taek;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.407-414
    • /
    • 1999
  • We have studied the reduction of NO by CO over perovskite-type oxides prepared by malic and method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxides. In the $LaCoO_3$ type catalyst, the partial substitution of Sr into A site enhanced the catalytic activity on the conversion of NO at less than $350^{\circ}C$. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the partial substitution of Fe or Mn into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. In addition, $La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_3$ mixed with $SnO_2$ or $MnO_2$ showed the synergy effect on the reduction of NO. The introduction of water into reactants feed decreased the catalytic activity but the deactivation was shown to be reversible. The introduction of $SO_2$ into reactants feed also decreased the catalytic activity.

  • PDF

Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling

  • Choi, Yun-Ho;Lee, Ye-Na;Park, Young-Jun;Yoon, Sung-Jin;Lee, Hee-Bong
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.349-354
    • /
    • 2016
  • The archaeon Sulfolobus solfataricus P1 carboxylesterase is a thermostable enzyme with a molecular mass of 33.5 kDa belonging to the mammalian hormone-sensitive lipase (HSL) family. In our previous study, we purified the enzyme and suggested the expected amino acids related to its catalysis by chemical modification and a sequence homology search. For further validating these amino acids in this study, we modified them using site-directed mutagenesis and examined the activity of the mutant enzymes using spectrophotometric analysis and then estimated by homology modeling and fluorescence analysis. As a result, it was identified that Ser151, Asp244, and His274 consist of a catalytic triad, and Gly80, Gly81, and Ala152 compose an oxyanion hole of the enzyme. In addition, it was also determined that the cysteine residues are located near the active site or at the positions inducing any conformational changes of the enzyme by their replacement with serine residues.

Construction of Two Metal-ion Binding Sites to Improve the 3′-5′Exonuclease Activity of Taq DNA Polymerase

  • Park, Yong-Hyun;Kim, Jong-Moon;Choi, Hye-Ja;Kim, Seog-K.;Kim, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.471-477
    • /
    • 1998
  • Taq DNA polymerase from Thermus aquaticus is very useful in the polymerase chain reaction. Taq DNA polymerase is classified in the pol I family, represented by E. coli DNA polymerase I. The three-dimensional structural alignment of 3'-5'exonuclease domains from the pol I family DNA polymerases explains why Taq DNA polymerase does not carry out proofreading in polymerase chain reactions. Three sequence motifs, Exo I, II, and III, must exist to carry out 3'-5'exonuclease activity for proof- reading by a 3'-5'exonuclease reaction, but these are abolished in Taq DNA polymerase. The key catalytic module in 3'-5'exonuclease is two metal ions chelated by four active-site carboxylic amino acids. Taq DNA polymerase was mutagenized to construct the catalytic module in the active site. The circular dichroism technique supported the formation of the catalytic module, and the radioactive assay showed that the 3'-5'exonuclease activity doubled in the mutant Taq DNA polymerase.

  • PDF