• 제목/요약/키워드: catalytic reduction

검색결과 769건 처리시간 0.021초

산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과 (The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame)

  • 이창엽;백승욱
    • 한국연소학회지
    • /
    • 제12권4호
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

4기통 디젤엔진에서의 Lean NOx Trap 촉매 정화 특성에 관한 연구 (A Study on the Conversion Performance of Lean NOx Trap for a 4-stroke Diesel Engine)

  • 한준섭;오정모;이기형;이진하
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.78-83
    • /
    • 2011
  • Diesel engine has many advantages such as high thermal efficiency, low fuel consumption and low emission of CO2. However, the diesel engine faced with strengthened emission regulation about NOx and PM. To suppress NOx emission, after-treatment systems such as Lean NOx Trap (LNT), Selective Catalytic Reduction (SCR) are considered as a more practical strategy. This paper investigated the performance of Lean NOx trap of the 4 stroke diesel engine which had a LNT catalyst. Characteristic of exhaust emission at NEDC mode was analyzed. From this result, the effect of nozzle attaching degree, injection quantity and gas flow change on NOx conversion performance was clarified.

대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구 (A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine)

  • 정수진;이천환
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

도시폐기물 소각공장에서의 다이옥신 배출특성(I) - 방지시설의 영향 - (Emission Characteristics of PCDD/Fs in MSW Incinerator(I) - The Effect of Air Pollution Control Device -)

  • 김진범;이우근
    • 대한환경공학회지
    • /
    • 제22권10호
    • /
    • pp.1817-1824
    • /
    • 2000
  • 본 연구는 도시폐기물 소각장 배출가스 중의 다이옥신 배출특성을 알아보기 위해 수행되었다. 소각로 내의 각 방지장치에서 측정된 결과에 의하면, 촉매반응탑 입구에서 가장 많은 양의 다이옥신이 측정되었다. 따라서 전기집진기는 다이옥신이 생성되는데 적당한 조건을 제공하는 것으로 보인다. 다이옥신 농도는 계절에 따라 큰 차이를 보여 겨울에 측정된 다이옥신 농도가 가을 보다 높았는데, 도시폐기물의 조성, 소각로 운전조건 등이 다이옥신 생성에 영향을 주고 있음을 제시해 준다.

  • PDF

SCR 촉매의 공간속도 및 선속도가 NOx 제거 효율에 미치는 영향 (Effect of NOx Removal Efficiency according to Space Velocity and Linear Velocity of SCR Catalyst)

  • 박진우;박삼식;구건우;홍정구
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.71-77
    • /
    • 2016
  • Air pollutants nitrogen oxides are inevitably generated in the combustion reaction. Its amount trend is steadily increasing because the rapid modern industrialization and population growth. For this reason, NOx is controlled to reducing the harmful components in the exhaust gas. So Marine Environment Protection Committee (MEPC) take effect 'Tier I', 'Tier II' of air pollution regulation in 2005 and 2011 respectively. According to NOx emissions are strictly regulated management of the vessel through them. In addition, since 2016 the regulation enter into force in the next step 'Tier III' was confirmed by MEPC 66th committee. It's 80% enhanced emissions limits than the 'Tier I' Alternatively these emission regulation, research is actively being carried out about exhaust gas after-treatment methods through the vessel application of Selective Catalytic Reduction(SCR). Therefore depending on the basic specification of cell density according to the Area velocity, Space velocity, Linear velocity is studied the effects of NOx removal efficiency

알콕사이드로부터 AlN분말의 합성 및 분말 특성 (Preparation of Aluminum Nitride from an Alkoxide and its Properties)

  • 이홍림;박세민;조덕호
    • 한국세라믹학회지
    • /
    • 제26권1호
    • /
    • pp.100-108
    • /
    • 1989
  • Aluminum hydroxides were prepared by the alkoxide hydrolysis method using Al-isopropoxide as a starting material and NH4OH as a catalytic agent. When Al-isopropoxide was hydrolyzed in a H2O-NH3 system, only Al(OH)3 was obtained over all pH values. However, AlOOH was formed besides Al(OH)3 when Al-isopropoxide was hydrolyzed in a H2O-NH3-isopropyl alcohol system. The AlOOH/Al(OH)3 ratio was increased as the isopropyl alcohol content was increased. The hydroxides, Al(OH)3 and AlOOH, obtained in this study and the commerical products, $\alpha$-Al2O3 and AlOOH were subjected to the carbothermal reduction and nitridation reaction to product AlN powder, using carbon black as a reducing agent under N2 atmosphere at various temperatures. AlN was synthesized from the obtained Al(OH)3 and the commercial AlOOH at 145$0^{\circ}C$, however, synthesized from the obtained AlOOH and the commercial alpha-alumina at 135$0^{\circ}C$. The temperature difference is assumed to be attributed to the reactivity of those powders. AlN powder prepared from the Al-isopropoxide was observed to have the narrower particle size distribution than that prepared from the commercial $\alpha$-Al2O3 or AlOOH.

  • PDF

Electrochemical Activity of a Blue Anatase TiO2 Nanotube Array for the Oxygen Evolution Reaction in Alkaline Water Electrolysis

  • Han, Junhyeok;Choi, Hyejin;Lee, Gibaek;Tak, Yongsug;Yoon, Jeyong
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.76-81
    • /
    • 2016
  • An anatase TiO2 nanotube array (NTA) was fabricated by anodization and successive heat treatments. When the anatase TiO2 NTA was cathodically polarized, its color changed to blue, and it could be used as an electrochemically active anode for an oxygen evolution reaction (OER) in alkaline water electrolysis. The structure of the blue anatase TiO2 NTA was controlled by the anodization conditions and its catalytic activity increased with an increase of the surface area. The activity of the blue anatase TiO2 NTA gradually reduced with the continued OER because of the partial oxidation of Ti3+ to Ti4+. However, an intermittent cathodic regeneration process could significantly slow its reduction rate. The blue anatase TiO2 NTA could be an alternative anode for alkaline water electrolysis.

벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구 (Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor)

  • 박수열
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

N-alkyl-N-acyl glucamines의 합성에 관한 연구 (Studies on the Synthesis of N-alkyl-N-acyl glucamines)

  • 안호정;최규석
    • 공업화학
    • /
    • 제7권1호
    • /
    • pp.171-176
    • /
    • 1996
  • 환경 친화성인 비이온 계면활성제 글루카마이드(N-알킬-N-아실 글루카민)는 크게 두 단계 반응으로 구분되는데, 첫 단계는 알킬 아민과 글루코스를 메탄올 용매하에 아민화 반응시킨 후, Ni 촉매하에 고압으로 환원시킨 결과 4종의 알킬 글루카민을 86~93%의 수율로 얻었다. 2단계 반응에서는 4종의 알킬 글루카민과 4종의 지방산 메틸 에스테르를 알칼리 촉매하에 메탄올을 환류시키면서 합성한 결과 16종중 12종의 글루카마이드는 84~95%수준의 높은 수율을 보였으나, 알킬기가 벤질일 경우에는 50~70%의 낮은 수율을 나타내었다. 알킬 글루카민 4종과 글루카마이드 16종에 대한 분자구조 확인은 IR, MS, NMR로 확인하였다.

  • PDF