• Title/Summary/Keyword: catalytic reduction

Search Result 767, Processing Time 0.022 seconds

Catalytic Activity of $Nd_{1-x}Sr_xCoO_{3-y}$ on the Oxidation of Carbon Monoxide

  • Kim, Keu-Hong;Kim, Seong-Han;Lee, Dong-Hoon;Kim, Yoo-Young;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 1991
  • The catalytic activity of $Nd_{1-x}Sr_xCoO_{3-y}$, $0{\leq}x{\leq}0.75$ and $0.001{\leq}y{\leq}0.103$, on the oxidation of carbon monoxide has been investigated from the structure analyses of the catalysts by X-ray diffraction and infrared spectroscopy and the measurements of the oxidation and adsorption rates of carbon monoxide. The catalytic activity is found to be correlated with Sr substitution (x) and nonstoichiometry (y). The oxidation power of carbon monoxide increases continuously with increasing Sr substitution without oxygen, but increases with Sr substitution up to x = 0.25 and then is almost constant at larger x values up to x = 0.75 with oxygen. This change of catalytic activity is explained by the oxidation-reduction properties of the catalyst due to the variation of nonstoichiometry.

A Study on Catalysts for Simultaneous Removal of 1,2-Dichlorobenzene and NOx (1,2-Dichlorobenzene 및 질소산화물 동시제거를 위한 촉매연구)

  • Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.522-526
    • /
    • 2009
  • The catalytic oxidation of 1,2-dichloribenzene (1,2-DCB) and simultaneous catalytic reduction of nitrogen oxides over the single catalyst has been investigated over various metals (Ru, Mn, Co and Fe) supported on $Al_2O_3$ and $CeO_{2}$. The activity of the different catalysts for catalytic oxidation of 1,2-dichloribenzene depended on the used metal, Ru/Co/$Al_2O_3$, Mn-Fe/CeO2 and Cr/$Al_2O_3$ (commercial catalysts) being the most actives ones. In the catalytic oxidation of chlorobenzene (CB), Ru/Co/$Al_2O_3$ is better than Pt-Pd/$Al_2O_3$, which is the well-known catalyst good for VOC oxidation. Furthermore, it has a good durability on the deactivation by $Cl_2$ and sulfur. For nitrogen oxides (NOx) removal, NOx conversion was 70% at $260^{\circ}C$.

A Study of $NH_3$ Adsorption/Desorption Characteristics in the Monolithic $NH_3-SCR$ Reactor (모노리스 $NH_3-SCR$ 반응기 내에서의 $NH_3$ 흡.탈착 특성에 대한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook;Jung, Myung-Geun;Yeo, Gwon-Koo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • Transient kinetics of $NH_3$ adsorption/desorption and of SCR(selective catalytic reduction) of NO with $NH_3$ were studied over vanadium based catalysts, such as $V_2O_5/TiO_2$ and $V_2O_5-WO_3/TiO_2$. In the present catalytic reaction process, NO adsorption is neglected while $NH_3$ is strongly chemisorbed on the catalytic surface. Accordingly, it is ruled out the possibility of a reaction between strongly adsorbed $NH_3$ and NO species in line with the hypothesis of an Eley-Rideal mechanism. The present kinetic model assumes; (1) non-activated $NH_3$ adsorption, (2) Temkin-type $NH_3$ coverage dependence of the desorption energy, (3) non-linear dependence of the SCR reaction rate on the $NH_3$ surface coverage. Thus, the surface heterogeneity for adsorption/desorption of $NH_3$ is taken into account in this model. The present study extends the pure chemical kinetic model based on a powdered-phase catalytic system to the chemico-physical one applicable to a realistic monolith reactor.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

HCCI Combustion Engines with Ultra Low CO2 and NOx Emissions and New Catalytic Emission Control Technology (CO2/NOx 초저배출형 HCCI 엔진 연소기술과 신촉매제어기술)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1413-1419
    • /
    • 2008
  • The Kyoto Protocol, that had been in force from February 16, 2005, requires significant reduction in $CO_2$ emissions for all anthropogenic sources containing transportation, industrial, commercial, and residential fields, etc, and automotive emission standards for air pollutants such as particulate matter (PM) and nitrogen oxides $(NO_x)$ become more and more tight for improving ambient air quality. This paper has briefly reviewed homogeneous charge compression ignition (HCCI) combustion technology offering dramatic reduction in $CO_2,\;NO_x$ and PM emissions, compared to conventional gasoline and diesel engine vehicles, in an effort of automotive industries and their related academic activities to comply with future fuel economy legislation, e.g., $CO_2$ emission standards and corporate average fuel economy (CAFE) in the respective European Union (EU) and United States of America (USA), and to meet very stringent future automotive emission standards, e.g., Tier 2 program in USA and EURO V in EU. In addition, major challenges to the widespread use of HCCI engines in road applications are discussed in aspects of new catalytic emissions controls to remove high CO and unburned hydrocarbons from such engine-equipped vehicles.