• Title/Summary/Keyword: catalytic pyrolysis

Search Result 81, Processing Time 0.026 seconds

Effect of Operational Parameters on the Products from Catalytic Pyrolysis of Date Seeds, Wheat Straw, and Corn Cob in Fixed Bed Reactor

  • Sultan Mahmood;Hafiz Miqdad Masood;Waqar Ali khan;Khurram Shahzad
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.591-597
    • /
    • 2023
  • Pakistan depends heavily on imports for its fuel requirements. In this experiment, catalytic pyrolysis of a blend of feedstock's consisting of date seed, wheat straw, and corn cob was conducted in a fixed bed reactor to produce oil that can be used as an alternative fuel. The main focus was to emphasize the outcome of important variables on the produced oil. The effects of operating conditions on the yield of bio-oil were studied by changing temperature (350-500 ℃), heating rate (10, 15, 20 ℃/min), and particle size (1, 2, 3 mm). Moreover, ZnO was used as a catalyst in the process. First, the thermal degradation of the feedstock was investigated by TGA and DTG analysis at 10 ℃/min of different particle sizes of 1, 2, and 3mm from a temperature range of 0 to 1000 ℃. The optimum temperature was found to be 450 ℃ for maximum degradation, and the oil yield was indicated to be around 37%. It was deduced from the experiment that the maximum production of bio-oil was 32.21% at a temperature of 450 ℃, a particle size of 1mm, and a heating rate of 15 ℃/min. When using the catalyst under the same operating conditions, the bio-oil production increased to 41.05%. The heating value of the produced oil was 22 MJ/kg compared to low-quality biodiesel oil, which could be used as a fuel.

Effect of MCM-41 Preparation Methods on the Kinetics of Catalytic Pyrolysis of Linear Low Density Polyethylene (MCM-41 촉매 합성법이 선형 저밀도 폴리에틸렌의 촉매 열분해 동역학에 미치는 영향)

  • Park Young-Kwon;Kim Joo-Sik;Jeon Jong-Ki;Lim Jung Eun;Kim Ji Man;Yoo Kyung-Seun
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.122-126
    • /
    • 2005
  • The effect of Al-MCM-41 preparation methods on the catalytic degradation of linear low density polyethylene (LLDPE) was investigated. Al-MCM-41 catalysts were synthesized by direct method (Al-MCM-41-D) and post treatment method (Al-MCM-41-P) and their characteristics were elucidated by XRD, BET, $NH_3\;TPD,\;^{27}Al$ MAS NMR. TGA kinetic analysis showed that the catalytic activation energies of Al-MCM-41-D and Al-MCM-41-P were 191.54 and 114.26 kJ/mol, respectively. The higher catalytic activity of Al-MCM-41-P would be attributed to its smaller pore size as well as higher number of acid sites that are accessible.

Catalytic Upgrading of Bio-oil Produced from Japanese Larch over MCM-41 (MCM-41 촉매 상에서 일본 낙엽송으로부터 생성된 바이오 오일의 접촉 개질 반응)

  • Park, Hyun Ju;Jeon, Jong-Ki;Jung, Kyeong Youl;Ko, Young Soo;Sohn, Jung Min;Park, Young-Kwon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.340-344
    • /
    • 2007
  • Catalytic upgrading of pyrolytic bio-oil produced from Japanes Larch was carried out over MCM-41 catalyst. Oil with enhanced stability was produced by the MCM-41 catalyst due to transform oxygen known as a main cause for the instability of bio-oil into $H_2O$, CO and $CO_2$. In addition, the MCM-41 catalyst produced the larger amount of phenolic compounds in the pyrolytic bio-oil product compared with that in the bio-oil produced without catalyst. Especially, the catalytic activity of Al-MCM-41 for the bio-oil upgrading was higher than that of Si-MCM-41 because Al-MCM-41 has the larger amount of acid sites. Also, the better reforming result was obtained when pyrolytic bio-oil vapor passed through catalytic layer rather than Japanese Larch was mixed with catalyst directly.

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Hydrodeoxygenation of Spent Coffee Bio-oil from Fast Pyrolysis using HZSM-5 and Dolomite Catalysts

  • Park, Jeong Woo;Ly, Hoang Vu;Linh, Le Manh;Tran, Quoc Khanh;Kim, Seung-Soo;Kim, Jinsoo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • Spent coffee is one of biomass sources to be converted into bio-oil. However, the bio-oil should be further upgraded to achieve a higher quality bio-oil because of its high oxygen content. Deoxygenation under hydrotreating using different catalysts (catalytic hydrodeoxygenation; HDO) is considered as one of the promising methods for upgrading bio-oil from pyrolysis by removal of O-containing groups. In this study, the HDO of spent coffee bio-oil, which was collected from fast pyrolysis of spent coffee ($460^{\circ}C$, $2.0{\times}U_{mf}$), was carried out in an autoclave. The product yields were 72.16 ~ 96.76 wt% of bio-oil, 0 ~ 18.59 wt% of char, and 3.24 ~ 9.25 wt% of gas obtained in 30 min at temperatures between $250^{\circ}C$ and $350^{\circ}C$ and pressure in the range of 3 to 9 bar. The highest yield of bio-oil of 97.13% was achieved at $250^{\circ}C$ and 3 bar, with high selectivity of D-Allose. The carbon number distribution of the bio-oil was analyzed based on the concept of simulated distillation. The $C_{12}{\sim}C_{14}$ fraction increased from 22.98 wt% to 27.30 wt%, whereas the $C_{19}{\sim}C_{26}$ fraction decreased from 24.74 wt% to 17.18 wt% with increasing reaction time. Bio-oil yields were slightly decreased when the HZSM-5 catalyst and dolomite were used. The selectivity of CO was increased at the HZSM-5 catalyst and decreased at the dolomite.

A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System (SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Analysis of Catalytic Cracking and Steam Reforming Technologies for Improving Endothermic Reaction Performance of Hydrocarbon Aviation Fuels (탄화수소 항공유의 흡열반응 성능향상을 위한 촉매 분해 및 수증기 개질 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.98-109
    • /
    • 2021
  • Fundamental parameters describing overall operational characteristics of active cooling systems of a hypersonic flight vehicle are mainly classified into endothermic hydrocarbon fuels, regenerative cooling channels, and materials and system structures. Of primary importance is the improvement of endothermic performance of hydrocarbon aviation fuels in a series of studies developing efficient regenerative cooling systems. In a previous study, therefore, an extensive technical analysis has been carried out on thermal decomposition characteristics of liquid hydrocarbon fuels. As a subsequent study, catalytic cracking and steam reforming technologies have been reviewed to find a way for the improvement of endothermic reaction performance of hydrocarbon aviation fuels.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors (산업 발생 노르말헥산과 벤젠 증기의 저온 분해)

  • Jo Wan-Kuen;Lee Joon-Yeob;Kang Jung-Hwan;Shin Seung-Ho;Kwon Ki-Dong;Kim Mo-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

Platinum Nano-Dispersion via In Situ Processing - Preparation and catalytic Property of Porous $CaZrO_3/MgO/Pt$ Nanocomposite

  • Yoshikazu;Hwang, Hae-Jin;Naoki Kondo;Tatsuki Ohji
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.163-167
    • /
    • 2001
  • A bulk porous $CaZrO_3/MgO$ composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of $PtO_2$. A mixture of $CaMg(CO_3)_2$(dolomite), $ZrO_2$, $PtO_2$ and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at $1100^{\circ}C$ for 2 h. The porous $CaZrO_3/MgO/Pt$ composite ($CaZrO_3/MgO$ : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous $CaZrO_3/MgO$ composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by $C_2H_4$) of the $CaZrO_3/MgO/Pt$ composite were investigated up to $900^{\circ}C$. In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by $C_2H_4$, respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and $de-NO_x$ in one component.

  • PDF