• Title/Summary/Keyword: catalytic domain

Search Result 189, Processing Time 0.026 seconds

CRYSTAL STRUCTURE OF tRNA ($m^1$ G37) METHYLTRANSFERASE

  • Ahn, Hyung-Jun;Lee, Byung-Ill;Yoon, Hye-Jin;Yang, Jin-Kuk;Suh, Se-Won
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.17-17
    • /
    • 2003
  • tRNA (m¹ G37) methyltransferase (TrmD) catalyze s the trans for of a methyl group from S-adenosyl-L-methionine (AdoMet) to G/sup 37/ within a subset of bacterial tRNA species, which have a residue G at 36th position. The modified guanosine is adjacent to and 3' of the anticodon and is essential for the maintenance of the correct reading frame during translation. We have determined the first crystal structure of TrmD from Haemophilus influenzae, as a binary complex with either AdoMet or S-adenosyl-L-homocysteine (AdoHcy), as a ternary complex with AdoHcy/phosphate, and as an apo form. The structure indicates that TrmD functions as a dimer (Figure 1). It also suggests the binding mode of G/sup 36/G/sup 37/ in the active site of TrmD and catalytic mechanism. The N-terminal domain has a trefoil knot, in which AdoMet or AdoHcy is bound in a novel, bent conformation. The C-terminal domain shows a structural similarity to DNA binding domain of trp or tot repressor. We propose a plausible model for the TrmD₂-tRNA₂ complex, which provides insights into recognition of the general tRNA structure by TrmD (Figure 2).

  • PDF

Identification and Characterization of Two New S-Adenosylmethionine-Dependent Methyltransferase Encoding Genes Suggested Their Involvement in Stipe Elongation of Flammulina velutipes

  • Huang, Qianhui;Mukhtar, Irum;Zhang, Yelin;Wei, Zhongyang;Han, Xing;Huang, Rongmei;Yan, Junjie;Xie, Baogui
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.441-448
    • /
    • 2019
  • Two new SAM-dependent methyltransferase encoding genes (fvsmt1 and fvsmt2) were identified from the genome of Flammulina velutipes. In order to make a comprehensive characterization of both genes, we performed in silico analysis of both genes and used qRT-PCR to reveal their expression patterns during the development of F. velutipes. There are 4 and 6 exons with total length of 693 and 978 bp in fvsmt2 and fvsmt1, respectively. The deduced proteins, i.e., FVSMT1 and FVSMT2 contained 325 and 230 amino acids with molecular weight 36297 and 24894 Da, respectively. Both proteins contained a SAM-dependent catalytic domain with signature motifs (I, p-I, II, and III) defining the SAM fold. SAM-dependent catalytic domain is located either in the middle or at the N-terminal of FVSMT2 and FVSMT1, respectively. Alignment and phylogenic analysis showed that FVSMT1 is a homolog to a protein-arginine omega-N-methyltransferase, while FVSMT2 is of cinnamoyl CoA O-methyltransferase type and predicted subcellular locations of these proteins are mitochondria and cytoplasm, respectively. qRT-PCR showed that fvsmt1 and fvsmt2 expression was regulated in different developmental stages. The maximum expression levels of fvsmt1 and fvsmt2 were observed in stipe elongation, while no difference was found in mycelium and pileus. These results positively demonstrate that both the methyltransferase encoding genes are involved in the stipe elongation of F. velutipes.

Molecular Cloning and Characterization of Serine/Threonine Phosphatase from Rat Brain

  • Yoo, Byoung-Kwon;Lee, Sang-Bong;Shin, Chan-Young;Kim, Won-Ki;Kim, Sung-Jin;Kwang, Ho-Ko
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.153-159
    • /
    • 2000
  • A novel serine/threonine protein phosphatase with EF-hand motif, which belongs to PPEF family was partially cloned from rat brain cDNA by employing RT-PCR method. The size of the amplified clone was 1.6kbp. The amplified DNA was subcloned into pGEM-T-Easy vector and the resulting plasmid was maned as pGEM-rPPEF2. The nucleuotide sequence is shared by 88% with that of mouse PPEF-2 cDNA, and the deduced amino acid sequence reveal 92% homology with that of mouse PPEF-2 cDNA. The N-terminal region of the cloned rat brain PPEF contains a putative phosphatase catalytic domain (PP domain) and the C-terminal region contains multiple $Ca^{2+}$ binding sites (EF region). The putative catalytic domin (PP) and the EF-hand motif (EF) regions were subcloned into pGEX4T-1 and were overexpressed in E. coli DH5 as glutathione-S-transferase (GST) fusion proteins. Expression of the desired fusion protein was identified by SDS-PAGE and also by immunoblot analysis using monoclonal antibody against GST. The recombinant proteins were purified by glutathione-agarose chromatography. This report is first to demonstrate the cloning of PPEF family from rat brain tissues. The clone reported here would be invaluable for the investigation of the role of this new type-phosphatase in rat brain.

  • PDF

Raw Starch-digesting Amylase is Comprised of two Distinct Domains of Catalytic and Substrate-Adsorbable Domain: Role of the C- Terminal Region in Raw-Starch-Binding

  • Kim, Cheorl-Ho
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.40-45
    • /
    • 2001
  • Raw starch-digesting amylase (BF-2A, M.W. 93, 000 Da) from Bacillus circulans F-2 was converted to two components during digestion with subtilisin. Two components were separated and designated as BF-2A' (63, 000 Da) and BF-2B (30, 000 Da), respectively. BF-2A' exhibited the same hydrolysis curve for soluble starch as the original amylase (BF-2A). Moreover, the catalytic activities of original and modified enzymes were indistinguishable in $K_{m}$, Vmax for, and in their specific activity for soluble starch hydrolysis. However, its adsorbability and digestibility on raw starch was greatly decreased. Furthermore, the enzymatic action pattern on soluble starch was greatly different from that of the BF-2A. A smaller peptide (BF-2B) showed adsorb ability onto raw starch. By these results, it is suggested that the larger peptide (BF-2A') has a region responsible for the expression of the enzyme activity to hydrolyze soluble substrate, and the smaller peptide (BF-2B) plays a role on raw starch adsorption. A similar phenomenon is observed during limited proteinase K, thermolysin, and endopeptidase Glu-C proteolysis of the enzyme. Fragments resulting from proteolysis were characterized by immunoblotting with anti-RSDA. The proteolytic patterns resulting from proteinase K and subtilisin were the same, producing 63- and 30-kDa fragments. Similar patterns were obtained with endopeptidase Glu-C or thermolysin. All proteolytic digests contained a common, major 63-kDa fragment. Inactivation of RSDA activity results from splitting off the C-terminal domain. Hence, it seems probable that the protease sensitive locus is in a hinge region susceptible to cleavage. Extracellular enzymes immunoreactive toward anti-RSDA were detected through whole bacterial cultivation. Proteins of sizes 93-, 75-, 63-, 55-, 38-, and 31-kDa were immunologically identical to RSDA. Of these, the 75-kDa and 63-kDa proteins correspond to the major products of proteolysis with Glu-C and thermolysin. These results postulated that enzyme heterogeneity of the raw starch-hydrolysis system might arise from the endogeneous proteolytic activity of the bacterium. Truncated forms of rsda, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional amylase that did not bind to raw starch. This indicates that the conserved region of RSDA constitutes a raw starch-binding domain, which is distinct from the active centre. The possible role of this substrate-binding region is discussed.d.

  • PDF

Regulation of AKT Activity by Inhibition of the Pleckstrin Homology Domain-PtdIns(3,4,5)P3 Interaction Using Flavonoids

  • Kang, Yerin;Jang, Geupil;Ahn, Seunghyun;Lee, Youngshim;Shin, Soon Young;Yoon, Youngdae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1401-1411
    • /
    • 2018
  • The serine-threonine kinase AKT plays a pivotal role in tumor progression and is frequently overactivated in cancer cells; this protein is therefore a critical therapeutic target for cancer intervention. We aimed to identify small molecule inhibitors of the pleckstrin homology (PH) domain of AKT to disrupt binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby downregulating AKT activity. Liposome pulldown assays coupled with fluorescence spectrometry were used to screen flavonoids for inhibition of the AKT PH-PIP3 interaction. Western blotting was used to determine the effects of the inhibitors on AKT activation in cancer cells, and in silico docking was used for structural analysis and optimization of inhibitor structure. Several flavonoids showing up to 50% inhibition of the AKT PH-PIP3 interaction decreased the level of AKT activation at the cellular level. In addition, the modified flavonoid showed increased inhibitory effects and the approach would be applied to develop anticancer drug candidates. In this study, we provide a rationale for targeting the lipid-binding domain of AKT, rather than the catalytic kinase domain, in anticancer drug development.

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch;Loukil, Sana;Marzouki, Mohamed Nejib
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.653-658
    • /
    • 2011
  • Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.

Enzymatic properties of the N- and C-terminal halves of human hexokinase II

  • Ahn, Keun-Jae;Kim, Jong-Sun;Yun, Mi-Jin;Park, Jeon-Han;Lee, Jong-Doo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.350-355
    • /
    • 2009
  • Although previous studies on hexokinase (HK) II indicate both the N- and C-terminal halves are catalytically active, we show in this study the N-terminal half is significantly more catalytic than the C-terminal half in addition to having a significantly higher $K_m$ for ATP and Glu. Furthermore, truncated forms of intact HK II lacking its first N-terminal 18 amino acids ($\Delta$18) and a truncated N-terminal half lacking its first 18 amino acids ($\Delta$18N) have higher catalytic activity than other mutants tested. Similar results were obtained by PET-scan analysis using $^{18}F-FDG$. Our results collectively suggest that each domain of HK II possesses enzyme activity, unlike HK I, with the N-terminal half showing higher enzyme activity than the C-terminal half.

Choristoneura fumiferana Granulovirus pk-1: A Baculoviral Protein Kinase

  • Giannopoulos, Paresa N.;Nassoury, Nasha;Lamontagne, Lucie;Guertin, Claude;Rashidan, Kianoush Khajeh
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.457-467
    • /
    • 2005
  • Open reading frame (ORF) 3 on the Choristoneura fumiferana granulovirus (ChfuGV), located in the 11 kb fragment of the BamHI genomic bank encodes a predicted 32-kDa putative kinase protein. Bioinformatics analysis on the predicted amino acid sequence of ChfuGV PK-1 revealed the existence of 11 catalytic subdomains. Sequence analysis within the 5'-untranslated region (5'-UTR) of ChfuGV pk-1 indicates the presence of both putative early and late promoter motifs, indicating that pk-1 may be expressed throughout the infection cycle. Promoter sequence analysis reveals that pk-1 is deprived of a TATA box and appears instead to be regulated by other cis-acting transcriptional regulatory elements. Temporal transcription analysis by RT-PCR confirms the appearance of transcripts detected from 2 h p.i. until 72 h p.i. Northern blot hybridization characterizes pk-1 transcription as a 1.2 kb transcript. Homology comparisons reveal that ChfuGV PK-1 protein is most closely related to Phthorimaea operculalla granulovirus (PoGV) with 80% amino acid identity.

Mitogen-activated $p70^{s6k}$ signalling pathway

  • Han, Jeung-Whan
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.135-139
    • /
    • 1996
  • $p70^{s6k}$ lies on a $p21^{ras}$-independent signalling pathway and plays an important role in mitogenesis. Activation is associated with phosphorylation at multiple sites, four of which lie in an autoinhibitory region. The immunosuppressant rapamycin induces $p70^{s6k}$ inactivation through dephosphorylation of a second set of mitogen-induced sites. Here we identify these sites as $T_{229}$, $T_{389}$, and $S_{404}$. $T_{229}$ resides in the "T loop" of the catalytic domain, an essential phosphorylation site in other kinases. However, $p70^{s6k}$ inactivation by rapamycin most closely parallels $T_{389}$ dephosphorylation. Mutation of $T_{389}$ to alanine ablates kinase activity, whereas mutation to glutamic acid confers constitutive kinase activity and rapamycin resistance. indicating an essential role for phosphorylation at this site. $T_{389}$ resides in an unusual hydrophobic motif, not previously noted, between the catalytic and autoinhibitory domains. The importance of this site, and surrounding motif, is emphasized by its conservation in other kinases including homologues of $p70^{s6k}$ derived from such distantly related organisms as yeast and plant.

  • PDF

Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and Activity

  • Hu, Hang;Chen, Kaixiang;Li, Lulu;Long, Liangkun;Ding, Shaojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.775-784
    • /
    • 2017
  • A neutral xylanase (CcXyn) was identified from Coprinus cinereus. It has a single GH10 catalytic domain with a basic amino acid-rich extension (PVRRK) at the C-terminus. In this study, the wild-type (CcXyn) and C-terminus-truncated xylanase ($CcXyn-{\Delta}5C$) were heterologously expressed in Pichia pastoris and their characteristics were comparatively analyzed with aims to examine the effect of this extension on the enzyme function. The circular dichorism analysis indicated that both enzymes in general had a similar structure, but $CcXyn-{\Delta}5C$ contained less ${\alpha}-helices$ (42.9%) and more random coil contents (35.5%) than CcXyn (47.0% and 32.8%, respectively). Both enzymes had the same pH (7.0) and temperature ($45^{\circ}C$) optima, and similar substrate specificity on different xylans. They all hydrolyzed beechwood xylan primarily to xylobiose and xylotriose. The amounts of xylobiose and xylotriose accounted for 91.5% and 92.2% (w/w) of total xylooligosaccharides (XOS) generated from beechwood by CcXyn and $CcXyn-{\Delta}5C$, respectively. However, truncation of the C-terminal 5-amino-acids extension significantly improved the thermostability, SDS resistance, and pH stability at pH 6.0-9.0. Furthermore, $CcXyn-{\Delta}5C$ exhibited a much lower $K_m$ value than CcXyn (0.27 mg/ml vs 0.83 mg/ml), and therefore, the catalytic efficiency of $CcXyn-{\Delta}5C$ was 2.4-times higher than that of CcXyn. These properties make $CcXyn-{\Delta}5C$ a good model for the structure-function study of $({\alpha}/{\beta})_8$-barrel-folded enzymes and a promising candidate for various applications, especially in the detergent industry and XOS production.