• Title/Summary/Keyword: catalytic agent

Search Result 168, Processing Time 0.024 seconds

The Catalytic Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 2-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.669-672
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the title reactions. The plot of kobs vs the concentration of alkali metal ethoxides is linear for the reactions performed in the presence of complexing age nt, 18-crown-6 ether, but curved upwardly for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions studied in this study behave as a catalyst. The catalytic effect was found to increase in the order Li+ << K+ ${\leq}$ Na+. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M+ ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M+/kEtO-) was found to be 2.3, 9.5 and 8.7 for the reaction of 8-(5-nitroquinolyl) 2-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, indicating that the catalytic effect is larger in the reaction of the former substrate than in that of the latter one. The larger catalytic effect was attributed to two possible complexing sites with alkali metal ions in the former substrate.

Synthesis of 2-(Allylthio)pyrazines As a Novel Cancer Chemopreventive Agent

  • Lee, Jong-Wook;Lee, Bong-yong;Kim, Nak-Doo
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.16-20
    • /
    • 2001
  • 2-(Allylthio)pyrazine derivatives were designed as a novel cancer chemopreventive agent that functions through selective inhibtion of cytochrome P-450 and induction of phase 11 enzymes involved in the detoxification of carcinogens. A practical preparation method of 2-(allylthio) pyrazine derivatives was established by the reaction of 2-mercaptopyrazine and allylbromides in the presence of a catalytic antioxidant, DABCO (1,4-diazabicyclo[2,2,2] octane), in dimethyl-formamide at below $50^{\circ}C$.

  • PDF

Decomposition of Volatile Organic Compounds Using Regenerated Metal Oxide Catalysts (폐 산업용 금속산화물계 촉매를 이용한 휘발성유기화합물의 제거)

  • Nam Seung-Won;Shim Wang-Geun;Kim Sang-Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.431-439
    • /
    • 2006
  • Catalytic oxidation of benzene, toluene and xylene (BTX) using regenerated metal oxide catalysts (ZnO-CuO, NiO, $Fe_2O_3$, ZnO, CrO) were investigated in a fixed bed flow reactor to evaluate their feasibility for the purpose of removing volatile organic compounds (VOCs). Four kinds of pre-treatment methods such as gas (air and hydrogen), acid aqueous solution, alkali aqueous solution and cleaning agent were used to find out the optimal regeneration conditions. The physico-chemical properties of the used and regenerated catalysts were characterized by BET and TPR (Temperature Programmed Reduction). The used catalysts showed high conversion ratio and the catalytic ability of toluene oxidation was in the order of ZnO-CuO>$Fe_2O_3$>NiO>ZnO>CrO. We found that the acid aqueous pre-treatment (0.1 N HNO$_3$) was the best way to enhance the catalytic activity of $Fe_2O_3$. In addition, air and hydrogen gas treatment were optimal for NiO and ZnO-CuO catalysts, respectively. Furthermore, the decomposition of BTX depends on the type of a catalyst and a gas molecule.

Investigation of Catalytic Deactivation by Small Content Oxygen Contained in Regeneration Gas Influenced on DSRP (직접 황 회수 공정으로 유입되는 재생가스에 함유된 미량산소의 촉매활성저하 원인 규명)

  • Choi, Hee-Young;Park, No-Kuk;Lee, Tae Jin
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • In order to regenerate the sulfidated desulfurization sorbent, oxygen is used as the oxidant agent on the regeneration process. The small amount of oxygen un-reacted in regeneration process is flowed into direct sulfur recovery process. However, the reactivity for $SO_2$ reduction can be deteriorated with the un-reacted oxygen by various reasons. In this study, the deactivation effects of un-reacted oxygen contained in the off-gas of regeneration process flowed into direct sulfur recovery process of hot gas desulfurization system were investigated. Sn-Zr based catalysts were used as the catalyst for $SO_2$ reduction. The contents of $SO_2$ and $O_2$ contained in the regenerator off-gas used as the reactants were fixed to 5.0 vol% and 4.0 vol%, respectively. The catalytic activity tests with a Sn-Zr based catalyst were for $SO_2$ reduction performed at $300-450^{\circ}C$ and 1-20 atm. The un-reacted oxygen oxidized the elemental sulfur produced by $SO_2$ catalytic reduction and the conversion of $SO_2$ was reduced due to the production of $SO_2$. However, the temperature for the oxidation of elemental sulfur increased with increasing pressure in the catalytic reactor. Therefore, it was concluded that the decrease of reactivity at high pressure is occurred by catalytic deactivation, which is the re-oxidation of lattice oxygen vacancy in Sn-Zr based catalyst with the un-reacted oxygen on the catalysis by redox mechanism. Meanwhile the un-reacted oxygen oxidized CO supplied as the reducing agent and the temperature in the catalyst packed bed also increased due to the combustion of CO. It was concluded that the rapidly increasing temperature in the packed bed can induce the catalytic deactivation such as the sintering of active components.

Chemoselective Alkylation of Aromatics with Benzyl Alcohol over Mesoporous ZSM-5

  • Jin, Hailian;Ansari, Mohd Bismillah;Jeong, Eun-Young;Park, Sang-Eon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.200-200
    • /
    • 2011
  • Hierarchical mesoporous ZSM-5 with enhanced mesoporosity was synthesized by microwave through the rapid assembly via ionic interaction between sulfonic acid functionalized ZSM-5 nano particles and cationic surfactant. The catalytic performance of enhanced accessibility due to mesoporosity and acidity were investigated in the alkylation of mesitylene with benzyl alcohol as alkylating agent. The effect of mole ratio of aromatic with benzyl alcohol, reaction time and alkylation agent were also studied. The enhanced mesoporosity and acidity of sulfonic acid functionalized mesoporous ZSM-5 induced activity enhancement compared with non-functionalized mesoporous ZSM-5, sulfonic functionalized mesoporous ZSM-5 synthesized by hydrothermal method and conventional microporous ZSM-5. The sulfonic acid functionalized mesoporous ZSM-5 showed much higher chemoselectivity of benzylated mesitylene than others, whereas the others mainly show dibenzyl ether as product. This significant difference in catalytic selectivity was resulted from the existence of mesopores, which definitely allowed the benzylation in mesopores.

  • PDF

Catalytic Conversion of Cellulose to Cellulose Acetate Propionate (CAP) Over SO42-/ZrO2 Solid Acid Catalyst

  • Leng, Yixin;Zhang, Yun;Huang, Chunxiang;Liu, Xiaocheng;Wu, Yuzhen
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1160-1164
    • /
    • 2013
  • The solid super acid catalyst $SO{_4}^{2-}$/$ZrO_2$ was prepared by impregnation method using $ZrO_2$ as the catalyst support. Catalyst forming was taken into consideration in order to separate catalyst from the mixture of cellulose acetate propionate (CAP). $Al_2O_3$ and sesbania gum powder were selected as binding agent and auxiliary agent respectively. The catalytic properties were evaluated through esterification of cellulose with acetic anhydride, propionic anhydride and characterized by XRD, FTIR and $NH_3$-TPD. In this paper, the effects of concentration of $H_2SO_4$ impregnated, calcination temperature, esterification temperature and esterification time on the yield, acyl content and viscosity of CAP were investigated. The results showed that $SO{_4}^{2-}/ZrO_2$ successfully catalyzed CAP synthesis over catalysts impregnated in 0.75 mol/L $H_2SO_4$ and calcined at $500^{\circ}C$. The yield, acetyl content and propionyl content of CAP reached the maximum value of 105.3%, 29.9% and 25.8% reacted at $50^{\circ}C$ for 8 h.

The Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 3-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.673-677
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the reactions of 8-(5-nitroquinolyl) 3-furoate with alkali metal ethoxides in anhydrous ethanol. The plot of kobs vs the concentration of alkali metal ethox ides is linear for the reactions performed in the presence of a complexing agent, 18-crown-6 ether, but exhibits upward curvatures for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions in this study behave as catalysts. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M + ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M + /kEtO-) was found to be 1.7, 3.4 and 2.5 for the reaction of 8-(5-nitroquinolyl) 3-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, 1.8, 3.7 and 2.4 for that of 8-(5-nitroquinolyl) benzoate, and 2.0, 9.8 and 9.3 for that of 8-(5-nitroquinolyl) 2-furoate with EtO- Li+ , EtO- Na+ and EtO- K+ , respectively. A 5-membered chelation at the leaving group is suggested to be responsible for the catalytic effect shown by alkali metal ions.

A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines (ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구)

  • Bae, Myung-Whan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.