• 제목/요약/키워드: catalytic activity

검색결과 1,632건 처리시간 0.032초

저농도 메탄 연소에서 상용 금속촉매의 활성 (Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane)

  • 이경환;박재현;송광섭
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

금속이온교환 제올라이트 촉매상에서 메탄을 이용한 산소과잉 배출가스중의 NO 제거 (Catalytic Removal of Nitric Oxide in Oxygen-Rich Exhaust with Methane over Metal Ion-Exchanged Zeolites)

  • 김상환;박정규
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.32-44
    • /
    • 2002
  • Selective catalytic reduction of nitric oxide by methane in the presence of excess oxygen was investigated over copper and cobalt ion-exchanged ZSM-5 zeolites. Copper ion-exchanged ZSM-5(Cu-ZSM-5) has the limitations for commercial applications to lean-bum gasoline and diesel engines due to low thermal stability and resistance to water vapor and sulfur dioxide. But cobalt ion-exchanged ESM-5(Co-ZSM-5) is more active at high temperatures and also stable to water vapor and sulfur dioxide for catalytic reduction of nitric oxide by methane. The catalytic activity of Cu-ZSM-5 for NO reduction increases with increasing temperatures, reaches the maximum conversion of 23.0% at 350\"C. and then decreases with higher temperatures. In the meantime catalytic activities of Co-ZSM-5 show the maximum conversion of 25.8% at $500^{\circ}C$ Therefore Co-ZSM-5 catalysts have higher thermal stability at high temperatures. Catalytic activities of both zeolites were remarkably enhanced with the existence of oxygen in the exhaust. It is noted that the catalytic activity of Cu-ZSM-5 decreases with the increasing concentration of methane while the catalytic activity of Co-ZSM-5 decreases with increasing contents of methane in the exhaust. This may imply the existence of different paths of NO reduction by methane in the presence of excess oxygen fur Cu-ZSM-5 and Co-ZSM-5 catalysts. For binary metal ionexchanged ZSM-5, the primary ion-exchanged metal may be masked by secondary ion-exchanged component, which plays the important role for catalytic activities of binary metal ion-exchanged ZSM-5, Therefore CuCo-ZSM-5 catalysts show the similar volcano-shaped curves to Cu-ZSM-5 catalysts between the activity and temperature. It Is interesting that the activities of CoCu-ZSM-5 catalysts indicate almost no dependence on the concentration of methane in the exhaust.aust.

구리 프탈로시아닌 촉매의 VOCs 산화 특성 (Characteristics of VOCs Oxidation using Copper Phthalocyanine Catalysts)

  • 서성규;윤형선
    • 한국대기환경학회지
    • /
    • 제20권4호
    • /
    • pp.515-521
    • /
    • 2004
  • The catalytic oxidation of volatile organic compounds (methanol. acetaldehyde) has been characterized using the copper phthalocyanine catalyst in a fixed bed flow reactor under atmospheric pressure. The catalytic activity for pretreatment conditions was examined by this reaction system. The catalytic activity was ordered as follows: metal free-PC<Cu ($\alpha$)-PC<Cu ($\beta$)-PC The formaldehyde, carbon monoxide as a partial oxidation product of methanol and acetaldehyde over Cu ($\alpha$)-PC catalyst were detected and the conversions of methanol and acetaldehyde were accomplished above 95% over Cu ($\alpha$) -PC, Cu ($\beta$) - PC catalyst at 35$0^{\circ}C$. The pretreated metal free -PC, Cu($\alpha$)-PC, Cu($\beta$)-PC catalysts have been characterised by TGA, EA and XRD analysis. The catalytic activity pretreated with air and $CH_3$OH mixture (P-4) or air only (P-5) was very excellent. XRD and EA results showed that Cu($\alpha$)-PC, Cu($\beta$)-PC were destroyed an(1 new metal oxide such as CuO were formed.

Kinetics and Catalytic Activity of Carbon-Nickel Nanocomposites in the Reduction of 4-Nitrophenol

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.217-222
    • /
    • 2015
  • Carbon-nickel nanocomposites were prepared by the reaction of fullerene ($C_{60}$) and nickel hydroxide in an electric furnace at $700^{\circ}C$ for 2 h. The hybrid carbon-nickel nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The kinetics and catalytic activity of the carbon-nickel nanocomposites in the reduction of 4-nitrophenol were confirmed by UV-vis spectroscopy.

Catalytic Properties of Monomeric Species of Brain Pyridoxine-5'-phosphate Oxidase

  • Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.21-27
    • /
    • 2001
  • The structural stability of brain pyrydoxine-5'-phosphate (PNP) oxidase and the catalytic properties of the monomeric species were investigated. The unfolding of brain pyridoxine-5'-phosphate (PNP) oxidase by guanidine hydrochloride (GuHCl) was monitored by means of fluorescence and circular dichroism spectroscopy Reversible dissociation of the dimeric enzyme into subunits was attained by the addition of 2 M GuHCl. The perturbation of the secondary structure under the denaturation condition resulted in the release of the cofactor FMN. Separation of the processes of refolding and reassociation of the monomeric species was achieved by the immobilization method. Dimeric PNP oxidase was immobilized by the covalent attachment to Affi-gel 15 without any significant lass of its catalytic activity. Matrix-bound monomeric species were obtained from the reversible refolding processes. The matrix bound-monomer was found to be catalytically active, possessing only a slightly decreased specific activity when compared to the refolded dimeric enzyme. In addition, limited chymotrypsin digestion of the oxidase yields two fragments of 12 and 161 kDa with a concomitant increase of catalytic activity The catalytically active fragment was isolated by ion exchange chromatography and analyzed for association of two subunits using the FPLC gel filtration analysis. The retention time indicated that the catalytic fragment of 16 kDa behaves as a compact monomer. Taken together, these results are consistent with the hypothesis that the native quaternary structure of PNP oxidase is not a prerequisite for catalytic function, but it could play a role in the regulation.

  • PDF

Catalytic Activity of $Nd_{1-x}Sr_xCoO_{3-y}$ on the Oxidation of Carbon Monoxide

  • Kim, Keu-Hong;Kim, Seong-Han;Lee, Dong-Hoon;Kim, Yoo-Young;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권1호
    • /
    • pp.35-39
    • /
    • 1991
  • The catalytic activity of $Nd_{1-x}Sr_xCoO_{3-y}$, $0{\leq}x{\leq}0.75$ and $0.001{\leq}y{\leq}0.103$, on the oxidation of carbon monoxide has been investigated from the structure analyses of the catalysts by X-ray diffraction and infrared spectroscopy and the measurements of the oxidation and adsorption rates of carbon monoxide. The catalytic activity is found to be correlated with Sr substitution (x) and nonstoichiometry (y). The oxidation power of carbon monoxide increases continuously with increasing Sr substitution without oxygen, but increases with Sr substitution up to x = 0.25 and then is almost constant at larger x values up to x = 0.75 with oxygen. This change of catalytic activity is explained by the oxidation-reduction properties of the catalyst due to the variation of nonstoichiometry.

전이금속 담지 촉매상에서 휘발성유기화합물(BTX)의 완전산화 (Complete Oxidation of Volatile Organic Compounds(BTX) over the Supported Transition Metal Catalysts)

  • 김상채;서성규;유의연
    • 청정기술
    • /
    • 제6권1호
    • /
    • pp.17-25
    • /
    • 2000
  • 상압유통식 고정층반응기를 이용하여 전이금속을 ALO-6에 담지한 촉매상에서 휘발성유기화합물인 벤젠, 톨루엔, 자일렌의 촉매산화에 관하여 조사하였다. 15% 전이금속/ALO-6 촉매상에서 톨루엔의 완전산화반응에 대한 활성의 크기는 Cu>Mn>Fe>V>Mo>Co>Ni>Zn의 순서였다. 15% Cu/ALO-6 촉매에서 소성온도의 증가는 비표면적을 감소시켰고 결과적으로 활성은 감소하였다. Cu/ALO-6촉매계에서 Cu의 담지량이 5%일 때 활성이 우수하였다. 5% Cu/ALO-6촉매상에서 벤젠, 톨루엔, 자일렌은 반응온도 $380^{\circ}C$, 접촉시간 4.5 g-cat.hr./g-mole 이상일 때 이산화탄소로 완전산화 되었다. 반응물에 따른 활성순서는 톨루엔>자일렌>벤젠 이었다. 반응물의 농도가 증가함에 따라 self-poison 에 기인하여 활성은 감소하였다.

  • PDF

가교 폴리(4-비닐피리딘)-구리(II) 착물에 의한 Ascorbic Acid의 산화반응 2. 가교제의 영향 (Oxidation of Ascorbic Acid by Crosslinked Poly(4-vinyl pyridine)-Cu(II) Complexes 2. Effect of Crosslinker)

  • 이석기;서재곤;구광모;전일련;김우식
    • 폴리머
    • /
    • 제24권2호
    • /
    • pp.252-258
    • /
    • 2000
  • 4-비닐피리딘과 N,N'-1,6-헥사메틸렌비스아크릴아미드를 라디칼중합하여 여러 가지 가교도를 가지는 가교 폴리(4-비닐피리딘) (CHP4VP)을 합성하였고, 이들 가교고분자와 구리(II)와의 착물을 평형흡착법으로 제조하였다. 제조한 착물들을 ascorbic acid (AA)의 산화반응 촉매로 사용하여 촉매활성을 조사하였다. CHP4VP-Cu(II) 착물에 의한 AA 산화반응은 Michaelis-Menten형 동력학적 거동을 나타내었다. CHP4VP-Cu(II) 촉매계의 촉매활성은 CHP4VP의 가교도가 증가할수록 증가하였고, 또 CHP4VP-Cu(II) 착물은 재사용 후에도 촉매활성이 거의 감소하지 않았다. 그러나 CHP4VP-Cu(II) 착물은 전보의 N,N'-메틸렌비스아크릴아미드가 가교제로 포함된 가교 폴리(4-비닐피리딘)-구리(II) 착물보다 AA 산화반응에 대한 촉매활성이 감소하는 경향을 나타내었다. 이들 결과로 부터 촉매계에 포함된 CHP4VP의 가교도와 가교제의 소수성이 AA 산화반응에 중요한 역할을 함을 알 수 있었다.

  • PDF

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF