Browse > Article
http://dx.doi.org/10.7473/EC.2015.50.3.217

Kinetics and Catalytic Activity of Carbon-Nickel Nanocomposites in the Reduction of 4-Nitrophenol  

Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Jeong Won (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
Publication Information
Elastomers and Composites / v.50, no.3, 2015 , pp. 217-222 More about this Journal
Abstract
Carbon-nickel nanocomposites were prepared by the reaction of fullerene ($C_{60}$) and nickel hydroxide in an electric furnace at $700^{\circ}C$ for 2 h. The hybrid carbon-nickel nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The kinetics and catalytic activity of the carbon-nickel nanocomposites in the reduction of 4-nitrophenol were confirmed by UV-vis spectroscopy.
Keywords
carbon-nickel nanocomposites; catalytic activity; kinetics; 4-nitrophenol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. J. Borah and P. Bharali, "Surfactant-free synthesis of CuNi nanocrystals and their application for catalytic reduction of 4-nitrophenol", J. Mol. Catal. A: Chem., 390, 29 (2014).
2 Y. Du, H. L. Chen, R. Z. Chen, and N. P. Xu, "Synthesis of paminophenol from p-nitrophenol over nano-sized nickel catalysts", Appl. Catal. A: Gen., 277, 259 (2004).   DOI
3 J. F. Corbett, "An historical review of the use of dye precursors in the formulation of commercial oxidation hair dyes", Dyes Pigments, 41, 127 (1999).   DOI
4 N. Pradhan, A. Pal, and T. Pal, "Silver nanoparticle catalyzed reduction of aromatic nitro compounds", Colloids and Surfaces A: Physicochem. Eng. Aspects, 196, 247 (2002).   DOI
5 S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, "Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes", J. Phys. Chem. C, 114, 8814 (2010).   DOI   ScienceOn
6 J. H. Lee, S. K. Hong, and W. B. Ko, "Synthesis of cuprous oxide using sodium borohydride under microwave irradiation and catalytic effects", J. Ind. Eng. Chem., 16, 564 (2010).   DOI
7 J. H. Lee, S. K. Hong, J. M. Kim, and W. B. Ko, "Synthesis of Gold Nanoparticles Using $Pluronic^{(R)}$ F127NF Under Microwave Irradiation and Catalytic Effects", J. Nanosci. Nanotechnol., 11, 734 (2011).   DOI
8 N. Sahiner, H. Ozay, O. Ozay, and N. Aktas, "New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols", Appl. Catal. A: Gen., 385, 201 (2010).   DOI
9 J. Z. Gao, F. Guan, Y. C. Zhao, W. Yang, Y. J. Ma, X. Q. Lu, J. G. Hou, and J. W. Kang, "Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity", Mater. Chem. Phys., 71, 215 (2001).   DOI
10 D. Astruc, F. Lu, and J. R. Aranzaes, "Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis", Angew. Chem. Int. Ed., 44, 7852 (2005).   DOI
11 T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A. Eroglu, T. Scott, and K. Hallam, "Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes", Chem. Eng. J., 172, 258 (2011).   DOI
12 F. Taghavi, C. Falamaki, A. Shabanov, L. Bayrami, and A. Roumianfar, "Kinetic study of the hydrogenation of p-nitrophenol to p-aminophenol over micro-aggregates of nano-$Ni_2B$ catalyst particles", Appl. Catal. A : Gen., 407, 173 (2011).   DOI
13 W. Xu, J. S. Kong, and P. Chen, "Single-Molecule Kinetic Theory of Heterogeneous and Enzyme Catalysis", J. Phys. Chem. C, 113, 2393 (2009).   DOI
14 A. Righi, P. Venezuela, H. Chacham, S. D. Costa, C. Fantini, R. S. Ruoff, L. Colombo, W. S. Bacsa, and M. A. Pimenta, "Resonance Raman spectroscopy in twisted bilayer graphene", Solid State Commun., 175-176, 13 (2013).   DOI
15 Y. Mei, G. Sharma, and Y. Lu, M. Ballauff, "High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes", Langmuir, 21, 12229 (2005).   DOI   ScienceOn
16 D. Nunes, M. Vilarigues, J. B. Correia, and P. A. Carvalho, "Nickel-carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms", Acta Mater., 60, 737 (2012).   DOI
17 J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, and X. Chen, "$CuFe_2O_4$ magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol", Chem. Eng. J., 221, 16 (2013).   DOI
18 H. B. Chu, L. Wei, R. L. Cui, J. Y. Wang, and Y. Li, "Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications", Coord. Chem. Rev., 254, 1117 (2010).   DOI   ScienceOn
19 R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, and B. Chan, "Radial deformation of carbon nanotubes by van der Waals forces", Nature, 364, 514 (1993).   DOI
20 B. Ghosh, H. Dutta, and S. K. Pradhan, "Microstructure characterization of nanocrystalline $Ni_3C$ synthesized by highenergy ball milling", J. Alloy Compd., 479, 193 (2009).   DOI
21 M. Bystrzejewski, Z. Karoly, J. Szepvolgyi, W. Kaszuward, A. Huczko, and H. Lange, "Continuous synthesis of carbonencapsulated magnetic nanoparticles with a minimum production of amorphous carbon", Carbon, 47, 2040 (2009).   DOI
22 G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, and K. Nielsch, J. Choi, P. Goring, U. Gosele, P. Miclea, and R. B. Wehrspohn, "Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays", Appl. Phys. Lett., 88, 023106 (2006).   DOI
23 B. Bokhonov and M. Korchagin, "The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel", J. Alloy Compd., 333, 308 (2002).   DOI