• Title/Summary/Keyword: catalytic ability

Search Result 108, Processing Time 0.036 seconds

Synthesis and Catalytic Applications of Ruthenium(0) Nanoparticles in Click Chemistry

  • Kumar, Avvaru Praveen;Baek, Min-Wook;Sridhar, Chirumarry;Kumar, Begari Prem;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1144-1148
    • /
    • 2014
  • Here we report a facile synthesis of ruthenium (Ru) Nanoparticles (NPs) by chemical co-precipitation method. The calcination of ruthenium hydroxide samples at $500^{\circ}C$ under hydrogen atmosphere lead to the formation of $Ru^0$ NPs. The size and aggregation of Ru NPs depends on the pH of the medium, and type of surfactant and its concentration. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope image (TEM) analyses of particles indicated the formation of $Ru^0$ NPs, and have 10 to 20 nm sizes. As-synthesized $Ru^0$ NPs are characterized and investigated their catalytic ability in click chemistry (azidealkyne cycloaddition reactions), showing good results in terms of reactivity. Interestingly, small structural differences in triazines influence the catalytic activity of $Ru^0$ nanocatalysts. Click chemistry has recently emerged to become one of the most powerful tools in drug discovery, chemical biology, proteomics, medical sciences and nanotechnology/nanomedicine. In addition, preliminary tests of recycling showed good results with neither loss of activity or significant precipitation.

High Performance Phenoxytitanium-Based Catalysts for Olefin Polymerization

  • Miyatake, Tatsuya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.159-160
    • /
    • 2006
  • We developed novel catalyst, PHENICS composed of the combination of a cyclopentadienyl group to perform a high catalytic activity and a bulky phenoxy group, which performs the production of high molecular weight polyolefin. The polymerization activity of PHENICS at high temperature is higher than well-known CGC catalyst. PHENICS showed the excellent ability of comonomer incorporation into polymer chain. The obtained copolymer had a high molecular weight. The PHENICS catalyst is also active to the copolymerization of ethylene and several vinyl comonomers such as styrene, norbornen, and conjugated dienes. We will discuss new cocatalysts for PHENICS to improve activity and the ability of molecular weight control.

  • PDF

Heterogeneous Catalysts for Hydrogen Generation Based on Ru-Incorporated Hydroxyapatite

  • Jaworski, Justyn Wayne;Kim, Dae-Hyun;Jung, Kyeong-Mun;Kim, So-Hue;Jeong, Jong-Ok;Jeon, Hyo-Sang;Min, Byoung-Koun;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.319-319
    • /
    • 2011
  • Hydrolysis of sodium borohydride provides a safe and clean approach to hydrogen generation. Having the proper catalytic support for controlling this reaction is therefore a valuable technology. Here we demonstrate the capability of hydroxyapatite as a novel catalytic support material for hydrogen generation. Aside from being inexpensive and durable, we reveal that Ru ion exchange on the HAP surface provides a highly active support for sodium borohydride hydrolysis, exemplifying a high total turnover number of nearly 24,000 mol $H_2$/ mol Ru. Moreover, we observe that the RuHAP support exhibits a high catalytic lifetime of approximately one month upon repeated exposure to $NaBH_4$ solutions. In addition to examining surface area effects, we also identified the role of complex surface morphology in enhancing hydrolysis by the catalytic transition metal covered surface. Particularly, we found that a polycrystalline RuHAP catalytic support exhibits shorter induction times for the initial bubble formation as well as increased hydrogen generation rates as compared to a single crystal supports. The independent factor of a complex surface morphology is believed to provide enhanced sites for gas release during the initial stages of the reaction. By demonstrating the ability to shorten induction time and enhance catalytic activity through changes in surface morphology and Ru content, we find it feasible to further explore this catalyst support in the construction of a practical hydrogen generator.

  • PDF

A comparative study on the characteristics of the dye-sensitized solar cell with different methods of manufacturing the counter electrode (상대전극 제작 방식에 따른 염료감응형 태양전지 특성 비교 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Hong, Ji-Tae;Chae, Won-Yong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1338_1339
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) consists of photo electrode, counter electrode and electrolyte. Photo electrode has titanium oxide layer with dye molecule to create electrons. And counter electrode is made of one layer that has catalytic ability for redox system such as the iodide/triiodide couple. Most DSC researchers use platinum as catalyst on counter electrode because platinum has good catalytic ability and conductivity. Platinum is doped on fluorine-doped tin oxide glass with different methods such as sputtering method, electrochemical method and so on. In this paper, we deposit platinum on counter electrode glass with two methods. One is the radio frequency (RF) sputtering method and the other is the chemical method with heating treatment. Finally, we compare the photovoltaic characteristics of DSCs that are assembled using two different counter electrodes.

  • PDF

NO Reduction Performance of V2O5-WO3/TiO2 Catalyst Supported on a Ceramic Sheet Filter (세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능)

  • Choi, Joo Hong
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Catalytic filter has many advantages for the industrial application owing to its bi-functional ability to treat nitrogen oxides and particulate simultaneously. The technical feasibility of using the catalytic filter in the flue gas treatment process will be more promoted if the high porous ceramic sheet filter is utilized. However, it is not easy to prepare the effective catalytic filter using sheet filter as it has less room for catalyst support due to its thin layer. In this study, catalytic filter using a domestic ceramic sheet filter element has been prepared and conducted the experimental evaluation for NO reduction performance. The current sheet filter element shows the low catalytic activity less than 92% conversion for NO concentration 700 ppm at the face velocity $0.02m\;s^{-1}$. This unexpected low catalytic activity seems to be caused by the present of extraordinary large pores from the lack of uniformity in the pore size distribution of the sheet filter. The large pore size of the sheet filter is reduced by composing the smaller powder as its raw material, which presents improvement in NO conversion more than 96%. More improvement is observed showing 98% NO conversion which is applicable to a commercial plant when the catalyst coating layer is expanded by adding the large $TiO_2$ particles during the catalyst preparation. Both of above two methods is regarded as that the broad gates of the larger pores in the coating layer are effectively filled with the proper catalyst. So these results encourage the utilization of sheet filter as a good catalytic filter material with its potential merit of high permeability.

Removal of Rhodamine Dye from Water Using Erbium Oxide Nanoparticles

  • Luaibi, Hasan M.;Al-Taweel, Saja S.;Gaaz, Tayser Sumer;Kadhum, Abdul Amir H.;Takriff, Mohd S.;Al-Amiery, Ahmed A.
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.747-752
    • /
    • 2019
  • Environmental pollution remains a considerable health risk source all over the world; however, hazards are usually higher in developing countries. Iraq has long been suffering from the problem of pollution and how to treat pollution. Photocatalytic degradation has turned out to be most productive process for dye degradation. In this investigation, Rhodamine B (RhB), dye has been selected for degradation under visible light illumination. To address this issue, we fabricate erbium trioxide nanoparticles (Er2O3/NPs). Erbium trioxide nanoparticles are prepared and utilized for photo-catalytic degradation. The characterization of Er2O3/NPs is described and confirmed by utilizing of XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). The average size of Er2O3 nanoparticles is observed to be 16.00 nm. Er2O3/NPs is investigated for its ability of photo-catalytic degradation through certain selected parameters such as concentration and time. The methodological results show that the synthesized Er2O3/NPs is a good photo-catalytic for Rhodamine degradation.

Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2

  • Wu, Jianghao;Jiang, Pingping;Qin, Xiaojie;Ye, Yuanyuan;Leng, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1675-1680
    • /
    • 2014
  • A peroxopolyoxotungsten-based ionic hybrid was synthesized by anion-change of peroxopolyoxometalate (POM) $PW_4O{_{24}}^{3-}$ with dicationic long-chain alkyl imidazolium ionic liquids. The characterization was conducted by FT-IR, TGA, $^1H$-NMR and CHN Elemental analyses. Its catalytic performance was evaluated by the epoxidation of soybean oil with $H_2O_2$ under solvent-free condition, including testing of organic cations influence, catalytic reusability and reaction conditions. The catalyst was proved to be a highly efficient recyclable catalyst for epoxidation of various vegetable oils with $H_2O_2$, showing high $H_2O_2$ utilization efficiency, high catalytic activity, convenient recovery and good reuse ability.

In Vitro Characterization of Protein Kinase CKII β Mutants Defective in β-β Dimerization

  • Kim, Tae-Hyun;Lee, Jae-Yong;Kang, Beom Sik;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.124-130
    • /
    • 2005
  • Protein kinase CKII is composed of two catalytic (${\alpha}$ or ${\alpha}^{\prime}$) subunits and two regulatory (${\beta}$) subunits. The ${\beta}$ subunit mediates tetramer formation through ${\beta}-{\beta}$ homodimerization and ${\alpha}-{\beta}$ heterodimerization. In a previous study R26 and R75, point mutants of $CKII{\beta}$ defective in ${\beta}-{\beta}$ dimerization, were isolated. In the present work we characterized these $CKII{\beta}$ mutants in vitro. Purified R26 and R75 bound to $CKII{\alpha}$ but were defective in binding to $CKII{\beta}$. R75 stimulated the catalytic activity of CKII whereas R26 gave little stimulation, and poly-L-lysine increased the stimulation of catalytic activity by R26 or R75. Circular dichroism and intrinsic fluorescence data pointed to different conformational changes in R26 and R75. Molecular modeling of these mutants provides an explanation of the difference in their ability to interact with $CKII{\beta}$ and to activate $CKII{\alpha}$.

An Investigation of the Catalytic Effect with $Nd_{1-x}Sr_{x}CoO_{3}$ Perovskite in a Sealed-off $CO_2$ Laser

  • Oh Heui-Suk;Kim Sung-Ho;Cho Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.593-595
    • /
    • 1992
  • To improve the lifetime and output power in a sealed-off $CO_2$ laser, a series of Nd$_{1-x}$Sr$_x$CoO$_3$(x = 0.0, 0.25, 0.40, 0.50, 0.60, 0.75) perovskite-type compounds has been synthesized and used for a cathode material. Using a typical method samples were sintered at 1150$^{\circ}$C and their structures were determined as a cubic form by means of XRD analysis. The degrees of $CO_2$ dissociation were measured by PAS (photoacoustic spectroscopy) with the lapse of time. In the case of $Nd_{0.4}$Sr$_{0.6}$$CoO_3$, which showed the highest catalytic cathode effect, only 7% of the initial $CO_2$ concentration were dissociated at 30 torr of gas mixture and 5 mA of discharge current. The more the gas pressure decreased and the discharge current increased, the more the degree of dissociation occurred. The ability of catalytic cathode to regenerate CO$_2$ in the laser cavity lies in order for x, 0.60 > 0.50 > 0.40 > 0.75 > 0.25 ${\gg}$ 0.0. Except for the case of x = 0.0 the amounts of $CO_2$ dissociation were found to be within 7-15% of the initial $CO_2$ concentration.

Immobile Artificial Metalloproteases

  • Kim, Myoung-Soon;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1911-1920
    • /
    • 2005
  • Effective artificial metalloproteases have been designed by using cross-linked polystyrene as the backbone. Artificial active sites comprising Cu(II) complexes as the catalytic site and other metal centers or organic functionalities as binding sites were synthesized. The activity of Cu(II) centers for peptide hydrolysis was greatly enhanced on attachment to polystyrene. By placing binding sites in proximity to the catalytic centers, the ability to hydrolyze a variety of protein substrates at selected cleavage sites was improved. Thus far, the most advanced immobile artificial proteases have been obtained by attaching the aldehyde group in proximity to the Cu(II) complex of cyclen.