• Title/Summary/Keyword: catalytic

Search Result 4,111, Processing Time 0.033 seconds

Selective Catalytic Etching of Graphene by SiOx Layer Depletion

  • Lee, Gyeong-Jae;Im, Gyu-Uk;Yang, Mi-Hyeon;Gang, Tae-Hui;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.163.2-163.2
    • /
    • 2014
  • We report catalytic decomposition of few-layer graphene on an $Au/SiO_x/Si$ surface wherein oxygen is supplied by dissociation of the native $SiO_x$ layer at a relatively low temperature of $400^{\circ}C$. The detailed chemical evolution of the graphene covered $SiO_x/Si$ surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native $SiO_x$ layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a $SiO_x$ layer could realize a new way to micromanufacture high-quality electrical contact.

  • PDF

Sequential Catalytic Combustion System (순차식 촉매연소 시스템)

  • 유상필;정남조;이승재;류인수;강성규;송광섭
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.197-200
    • /
    • 2004
  • Compared to conventional flame combustion, catalytic combustion had the advantage of oxidation of V.O.C. gas which was high voluminous, low caloric mixture flow. However, the temperature of mixture gas should be over the one of catalytic reaction start and the control of reaction on the catalytic surface tends to be vulnerable. To overcome these obstacles, composition of both catalytic combustor and heat exchanger was devised and named the sequential catalytic combustion system. In this system, only trigger unit needed preheating process for transient starting time. Once trigger unit was ignited, the next unit w3s supplied heat to ignite from that and same process was performed to the last one sequentially. When it come to steady state, whole mixture gas was oxidated at each unit simultaneously and preheating for trigger unit was not needed any more. System of 100 kcalh/hr capacity was devised and operated successfully.

  • PDF

Catalytic Removal of Nitric Oxide in Oxygen-Rich Exhaust with Methane over Metal Ion-Exchanged Zeolites (금속이온교환 제올라이트 촉매상에서 메탄을 이용한 산소과잉 배출가스중의 NO 제거)

  • 김상환;박정규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.32-44
    • /
    • 2002
  • Selective catalytic reduction of nitric oxide by methane in the presence of excess oxygen was investigated over copper and cobalt ion-exchanged ZSM-5 zeolites. Copper ion-exchanged ZSM-5(Cu-ZSM-5) has the limitations for commercial applications to lean-bum gasoline and diesel engines due to low thermal stability and resistance to water vapor and sulfur dioxide. But cobalt ion-exchanged ESM-5(Co-ZSM-5) is more active at high temperatures and also stable to water vapor and sulfur dioxide for catalytic reduction of nitric oxide by methane. The catalytic activity of Cu-ZSM-5 for NO reduction increases with increasing temperatures, reaches the maximum conversion of 23.0% at 350\"C. and then decreases with higher temperatures. In the meantime catalytic activities of Co-ZSM-5 show the maximum conversion of 25.8% at $500^{\circ}C$ Therefore Co-ZSM-5 catalysts have higher thermal stability at high temperatures. Catalytic activities of both zeolites were remarkably enhanced with the existence of oxygen in the exhaust. It is noted that the catalytic activity of Cu-ZSM-5 decreases with the increasing concentration of methane while the catalytic activity of Co-ZSM-5 decreases with increasing contents of methane in the exhaust. This may imply the existence of different paths of NO reduction by methane in the presence of excess oxygen fur Cu-ZSM-5 and Co-ZSM-5 catalysts. For binary metal ionexchanged ZSM-5, the primary ion-exchanged metal may be masked by secondary ion-exchanged component, which plays the important role for catalytic activities of binary metal ion-exchanged ZSM-5, Therefore CuCo-ZSM-5 catalysts show the similar volcano-shaped curves to Cu-ZSM-5 catalysts between the activity and temperature. It Is interesting that the activities of CoCu-ZSM-5 catalysts indicate almost no dependence on the concentration of methane in the exhaust.aust.

An Experimental Study on the Characteristics of Gasline Engine Exhaust-gas by Changing Catalytic Converter Position for Cold-starting (가솔린엔진의 냉시동시 촉매변환기 위치변화에 따른 배기가스특성에 관한 실험적 연구)

  • Lee, Hae-Chul;Seok, Dong-Hyeon;Yun, Jun-Gyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.945-949
    • /
    • 2001
  • This study is an experimental study on the characteristics of emission by changing catalytic converter position for cold-start. The measurements are done a changing of the distance between exhaust manifold and catalytic converter. It measured temperature of exhaust manifold, before and after catalytic converter at each position of experimental condition. and measured the characteristics of emission which is HC, CO, $CO_{2}$ and lambda at each position of experimental condition. The results show a few advantage about reduction of HC and CO as catalytic converter's temperature is raised quickly as closed exhaust manifold. but $CO_{2}$ has not the same trend of HC and CO. From measurement value of lambda, reduction effects of $NO_{x}$ are known a few advantage as increase of the distance between exhaust manifold and catalytic converter.

  • PDF

A Study on the Geometry Decision of Catalytic Converter for Motorcycle (2륜 자동차 적용을 위한 촉매변환기 형상결정에 관한 연구)

  • Yi, Chung-Seub;Chung, Han-Shik;Jeong, Hyo-Min;Suh, Jeong-Se;Lee, Cheol-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.137-142
    • /
    • 2006
  • This research represents the catalytic converter for application in the motorcycle. Present research model type is monolithic catalytic converter and this type have been widely used for satisfaction on and the regulations of pollutant emissions in automobiles. The flow characteristics in a single monolith automotive catalytic converter were investigated by using a computational simulation method without chemical reaction. So we limit the discussion to the effect of flow uniformity in the catalytic converter. Simulation result shows that the flow uniformity of megaphone type catalytic converter is higher than that of a base type. Therefore, the megaphone type is more suitable to motorcycle.

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

Catalytic Combustion of Carbon Particulate over LaMnO3 Perovskite-Type Oxides (LaMnO3형 페롭스카이트 산화물에서 입자상물질의 촉매연소반응)

  • Lee, Yong Hwa;Lee, Geun Dae;Park, Seong Su;Hong, Seong Su
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.619-626
    • /
    • 2004
  • We have studied the catalytic combustion of soot particulates over perovskite-type oxides prepared by malic acid method, The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxide. In addition, the reaction conditions such as temperature and $O_2$ concentration were investigated. The partial substitution of alkali metals into A site in the $LaMnO_3$ catalyst, enhanced the catalytic activity in the combustion of carbon particulate and the activity was shown in the order: Cs > K > Na. For the $La_{1-x}Cs_{x}MnO_{3}$ catalysts, the catalytic activity showed the maximum value with x=0.3 but no more increase on the catalytic activity was shown with x > 0.3. For the $La_{0.8}Cs_{0.2}MnO_{3}$ catalyst, the substitution of Fe or Ni increased the ignition temperature. The ignition temperature decreased with an increase of $O_2$ concentration, however, no more increase in the catalytic activity was shown with $O_2$ concentration > 0.2. The introduction of NO into reactants showed no effect on the catalytic activity.

Catalytic Properties of Monomeric Species of Brain Pyridoxine-5'-phosphate Oxidase

  • Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.21-27
    • /
    • 2001
  • The structural stability of brain pyrydoxine-5'-phosphate (PNP) oxidase and the catalytic properties of the monomeric species were investigated. The unfolding of brain pyridoxine-5'-phosphate (PNP) oxidase by guanidine hydrochloride (GuHCl) was monitored by means of fluorescence and circular dichroism spectroscopy Reversible dissociation of the dimeric enzyme into subunits was attained by the addition of 2 M GuHCl. The perturbation of the secondary structure under the denaturation condition resulted in the release of the cofactor FMN. Separation of the processes of refolding and reassociation of the monomeric species was achieved by the immobilization method. Dimeric PNP oxidase was immobilized by the covalent attachment to Affi-gel 15 without any significant lass of its catalytic activity. Matrix-bound monomeric species were obtained from the reversible refolding processes. The matrix bound-monomer was found to be catalytically active, possessing only a slightly decreased specific activity when compared to the refolded dimeric enzyme. In addition, limited chymotrypsin digestion of the oxidase yields two fragments of 12 and 161 kDa with a concomitant increase of catalytic activity The catalytically active fragment was isolated by ion exchange chromatography and analyzed for association of two subunits using the FPLC gel filtration analysis. The retention time indicated that the catalytic fragment of 16 kDa behaves as a compact monomer. Taken together, these results are consistent with the hypothesis that the native quaternary structure of PNP oxidase is not a prerequisite for catalytic function, but it could play a role in the regulation.

  • PDF

NO REDUCTION PROPERTY OF Pt-V2O5-WO3/TiO2 CATALYST SUPPORTED ON PRD-66 CERAMIC FILTER

  • Kim, Young-Ae;Choi, Joo-Hong;Bak, Young-Cheol
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.239-246
    • /
    • 2005
  • The effect of Pt addition over $V_2O_5-WO_3/TiO_2$ catalyst supported on PRO-66 was investigated for NO reduction in order to develop the catalytic filter working at low temperature. Catalytic filters, $Pt-V_2O_5-WO_3/TiO_2/PRD$, were prepared by co-impregnation of Pt, V, and W precursors on $TiO_2$-coated ceramic filter named PRD (PRD-66). Titania was coated onto the pore surface of the ceramic filter using a vacuum aided-dip coating method. The Pt-loaded catalytic filter shifted the optimum working temperature from $260-320^{\circ}C$(for the catalytic filter without Pt addition) to $190-240^{\circ}C$, reducing 700 ppm NO to achieve the $N_x$ slip concentration($N_x\;=\;NO+N_2O+NO_2+NH_3$) less than 20 ppm at the face velocity of 2 cm/s. $Pt-V_2O_5-WO_3/TiO_2$ supported on PRD showed the similar catalytic activity for NO reduction with that supported on SiC filter as reported in a previous study, which implies the ceramic filter itself has no considerable interaction for the catalytic activity.

Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor (나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향)

  • Hong, Sung-Jei;Isshiki Minoru;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.