• 제목/요약/키워드: catalysis

검색결과 884건 처리시간 0.025초

Characteristics of the Inhibitory Action of Protease Inhibitors on the Glucose-6-phosphate Transporter

  • Choi, Joon-Sig;Shin, Jeong-Sook;Choi, Hong-Sug;Park, Jong-Sang
    • BMB Reports
    • /
    • 제30권2호
    • /
    • pp.157-161
    • /
    • 1997
  • The present paper reports characteristics and specificity of the inhibitory action of $N^{\alpha}-tosyl-L-lysine-chloromethyl\;ketone$ (TLCK) and $N^{\alpha}-tosyl-L-phenylalanine-chloromethyl\;ketone$ (TPCK) on the glucose6-phosphate transporter of rat liver microsomes. The TLCK-induced inhibition was pH dependent. The inhibition constants for TPCK were determined by following pseudo-Lst order reaction mechanism. The inhibition was protected by preincubation with excess amount of glucose-6-phosphate. The results proved that (a) TLCK inactivates the microsomal glucose-6-phosphate transporter, (b) the inhibition results from the modification of sulfhydryl groups of the transporter.

  • PDF

Microwave Synthesis of Hydrotalcite by Urea Hydrolysis

  • Yang, Zhiqiang;Choi, Kwang-Min;Jiang, Nanzhe;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2029-2033
    • /
    • 2007
  • Hydrotalcite, layered double hydroxides (LDH), with hexagonal morphology has been rapidly synthesized by microwave reaction within 1 hour by urea hydrolysis from homogeneous solution. Different synthesis parameters, Mg/Al molar ratio, microwave reaction temperature and microwave power were systematically investigated. Pure hydrotalcite phase was obtained for Mg/Al ratios of 2:1 and 3:1, and higher reaction temperature gave higher crystallinity. The hydrotalcite synthesized at 600W power shows the highest crystallinity and more homogeneous crystal size distribution. The hydrotalcite samples were characterized by powder X-ray diffraction (XRD), simultaneous thermogravimetric/differential thermal analysis (TG/DTA), Fourier Transform Infrared (FT-IR) and Scanning electron micrograph (SEM).

Chiral Mesoporous Silica for Asymmetric Metal-free Catalysis: Enhancement of Chirality thorough Confinement Space by Plug Effect

  • 정은영;임청래;박상언
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • The addition of a carbanion to ${\yen}{\acute{a}}{\yen}{\hat{a}}$-unsaturated carbonyl compounds is of importance in the C-C bond formation reactions for modern pharmaceuticals and organic synthesis. Recently, heterogeneous asymmetric catalysis became more attractive area of research because of the easy recovery and separation of the catalyst from the reaction system. Most of synthetic methods for heterogeneous catalysts were grafting or immobilization of homogeneous catalyst onto the solid supports. Trans-1,2-Diaminocyclohexane(DACH) and L-proline ligands have been enormously used as chiral ligands in several catalytic transformation under homogenous conditions. Our group prepared l-proline functionalized mesoporous silica was synthesized under acidic condition using a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer template (EO20PO70EO20, Pluronic P-123, BASF). Furthermore, we successfully directly synthesized trans-1,2 diaminocyclohexane functionalized mesoporous silica by using microwave method. The direct functionalization of chiral ligand into the framework of mesoporous materials is expected to be useful for the heterogeneous asymmetric catalysis. So, we adopt the direct synthesis of chiral ligand functionalized mesoporous silica by using thermal and microwave irradiation. Then, chiral ligand functionalized mesoporous silicas were applied to enantioselective asymmetric catalytic reactions.

  • PDF

Dehydrogenation of Ethylbenzene to Styrene with CO2 over TiO2-ZrO2 Bifunctional Catalyst

  • Burri, David Raju;Choi, Kwang-Min;Han, Sang-Cheol;Burri, Abhishek;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.53-58
    • /
    • 2007
  • In the dehydrogenation of ethylbenzene to styrene, CO2 could play a role as an oxidant to increase conversion of ethylbenzene and stability as well over TiO2-ZrO2 mixed oxide catalysts. TiO2-ZrO2 catalysts were prepared by co-precipitation method and were characterized by BET surface area, bulk density, X-ray diffraction, temperature programmed desorption of NH3 and CO2. These catalysts were found to be X-ray amorphous with enhanced surface areas and acid-base properties both in number and strength when compared to the respective oxides (TiO2 and CO2). These catalysts were found to be highly active (> 50% conversion), selective (> 98%) and catalytically stable (10 h of time-on-stream) at 600 oC for the dehydrogenation of ethylbenzene to styrene. However, in the nitrogen stream, both activity and stability were rather lower than those in the stream with CO2. The TiO2-ZrO2 catalysts were catalytically superior to the simple oxide catalysts such as TiO2 and ZrO2. The synergistic effect of CO2 has clearly been observed in directing the product selectivity and prolonging catalytic activity.