## Preparation of CuO/CeO<sub>2</sub> nanoparticle catalysts and their catalytic decomposition for N-nitrosodimethylamine

Jin-Soo Hwang<sup>1</sup>, Taihuan Jin<sup>1</sup>, Young-Kyu Hwang<sup>1</sup>, Jong-San Chang<sup>1</sup>, Do-Young Ra<sup>2</sup>, Byong-Kwon Jeh<sup>2</sup>, Chang-Kook Lee<sup>2</sup> and Si-Hyung Jo<sup>2</sup>

- 1. Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology
- 2. KT&G Central Research Institute

Ceria (CeO<sub>2</sub>) has a unique catalytic property as an oxygen reservoir, which stores and releases oxygen via the redox shift between Ce<sup>4+</sup> and Ce<sup>3+</sup> under oxidizing and reducing conditions. CeO<sub>2</sub> nanocrystals and CuO/CeO<sub>2</sub> composites are prepared via precipitation method. Nitrosamines are well-recognized teratogens and carcinogens in animals and are considered potentially carcinogenic in humans. With a characteristic functional group of -N-N=O in their structure, nitrosamines can cause serious health risk even in trace amounts.

As far as reducing the -N-N=O functional group of nitrosamines from tobacco smoke, CuO/CeO<sub>2</sub> composite enhances the oxidization of NO to NO<sub>2</sub>. NDMA, which contains -N-N=O functional group with two methyl groups, is selected as the model compound. In this work, the catalytic decomposition of N-nitrosodimethylamine (NDMA) on CuO/CeO<sub>2</sub> nanoparticles has been investigated by in-situ infrared technique and thermogravimetric analysis with a mass detector (TGA/MS).