• Title/Summary/Keyword: casting direction

Search Result 96, Processing Time 0.03 seconds

A Study on the Occurrence of the Striation Defect during the Continuous Casting with the Heated Mold (가열주형 연속주조시 발생되는 줄무늬 결함에 관한 연구)

  • An, Ki-Sung;Song, Tae-Seck;Ji, Tae-Gu;Jo, Hyung-Ho;Kim, Myung-Han
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.145-150
    • /
    • 1997
  • The striations parallel to the casting direction are the characteristic defects occurring during the unidirectional solidification of nonferrous metals such as pure Al and Sn. It has been known that the defects affect the recrystallization temperature as well as the mechanical and electrical properties of Al. However, it has not been still known about the effect of casting factors such as the casting speed, rod diameter of cast metals, and alloying elements on the occurrence of striations. In the present study, these casting factors affecting the occurrence of striation were investigated by adopting the quantitative examination of striations. Also, the relation between striation defects and feathery grain, which are very similar to the striation defects, was studied.

  • PDF

A Study on the Castability Depending On Angle and Direction of Sprue and Wax Pattern (Sprue와 Wax Pattern의 각도 및 방향에 따른 주조성 연구)

  • Koh, Myoung-Won;Choi, Un-Jea;Chung, Hee-Sun
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.105-114
    • /
    • 2004
  • This study obtained the following consequences, as a result of the comparative analysis for the castability depending on an angle of the sprue and wax pattern in case of manufacturing dental prostheses, for the castability depending on direction, and for the castablility of sprue, which attached the reserve to each different 3.5mm roll wax(sprue wax) and to 2.5mm sprue wax. 1. As a result of the comparative analysis for the castability depending on an angle of the sprue and wax pattern, the best castability was shown when the angle of the sprue and wax pattern is 180$^{\circ}\Delta$(straight line), and the lowest castability was shown in 45$^{\circ}\Delta$, which was curved most, and there was no statistical significance. 2. As a result of the comparative analysis for the castability of an angle depending on direction, the best castability was shown in the farthest side from the direction of centrifugal casting, and the lowest castability was shown in the same side as the direction of centrifugal casting, and there was no statistical significance. 3. Given comparing the castability depending on the pattern of sprue, the better castability was shown in 135$^{\circ}\Delta$ and 180$^{\circ}\Delta$ when using 3.5mm roll wax(sprue wax), compared to attaching the reserve to 2.5mm sprue wax.

  • PDF

One-dimensional modeling of flat sheet casting or rectangular Fiber spinning process and the effect of normal stresses

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 1999
  • This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the extensional flow outside the die the initial condition containing the information of shear flow history inside the die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other words, the negative value of the second normal stress difference causes thickness swelling much higher than width of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer processing operations, since the constitutive equation with the vanishing second normal stress difference is shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio in width direction.

  • PDF

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

Study on the Bond Mechanism of the Reinforcing Bars by Casting Direction of Recycled Coarse Aggregate Concrete using Acoustic Emission Method (음향방출기법을 이용한 순환굵은골재 콘크리트의 타설방향에 따른 철근의 부착메커니즘에 관한 연구)

  • Jeon, Su-Man;Yun, Hyun-Do;You, Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.245-248
    • /
    • 2006
  • The objective of this study is to take the first step in creating a user-friendly health monitoring system for recycled aggregate concrete structure using acoustic emission(AE). Each specimen was a cube, the edge of which was 150mm. For pull-out tests, a steel rebar, 13mm in diameter, was embedded in the center of each specimen and casting directions(i.e., vertical and horizontal) were considered in this paper. The AE parameters were analyzed for damage levels(i.e. internal cracking stage, pull-out stage) of all specimens. Results from this study show that event, duration versus amplitude of a signal, showed a clear difference for different loading stages depending upon the concrete casting directions.

  • PDF

Explosion Casting: An Efficient Selection Method for Overlapped Virtual Objects in Immersive Virtual Environments (몰입 가상현실 환경에서 겹쳐진 가상객체들의 효율적인 선택을 위한 펼침 시각화를 통한 객체 선택 방법)

  • Oh, JuYoung;Lee, Jun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • To interact with a virtual object in immersive virtual environment, the target object should be selected quickly and accurately. Conventional 3D ray casting method using a direction of user's hand or head allows the user to select an object quickly. However, accuracy problem occurs when selecting an object using conventional methods among occlusion of objects. In this paper, we propose a region of interest based selection method that enables to select an object among occlusion of objects using a combination of gaze tracking and hand gesture recognition. When a user looks at a group of occlusion of objects, the proposed method recognizes user's gaze input, and then region of interest is set by gaze input. If the user wants to select an object among them, the user gives an activation hand gesture. Then, the proposed system relocates and visualizes all objects on a virtual active window. The user can select an object by a selecting hand gesture. Our experiment verified that the user can select an object correctly and accurately.

Numerical Analysis on Flow and Heat Transfer in Twin-Roll Strip Casting Using an Unstructured Fixed-Grid System (비정렬 고정격자계를 이용한 쌍롤 박판주조에서의 유동장 및 열전달 해석)

  • Lee, Jun-Sik;Lee, Ju-Myeong;Jeong, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.648-657
    • /
    • 2002
  • This paper presents a numerical analysis on the solidification characteristics in twin-roll strip casting. Unstructured fixed-grid system was employed to deal with phase change. Melting of pure gallium was analyzed to confirm the validity of present program in both structured and unstructured grid systems. An algorithm for simultaneous calculation of the temperature in the roll and the molten metal pool was developed. The flow field in the pool and heat transfer features between pool and roll were shown. The effect of process parameters was also studied. Since the geometry of the molten metal Pool significantly deforms along the casting direction, unstructured grid system is more efficient. The unstructured grid system gives almost the same accuracy, even though the number of grids is only 60% of the structure done.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Electromagnetic Duo-Cast Al Hybrid Material

  • Suh, Jun Young;Park, Sung Jin;Kwon, Do-Kyun;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.499-505
    • /
    • 2018
  • This investigates the microstructure and mechanical properties of Al hybrid material prepared by electromagnetic duo-casting to determine the effect of heat treatment. The hybrid material is composed of an Al-Mg-Si alloy, pure Al and the interface between the Al-Mg-Si alloy and pure Al. It is heat-treated at 373, 573 and 773K for 1h and T6 treated (solution treatment at 773K for 1h and aging at 433K for 5h). As the temperature increases, the grain size of the Al-Mg-Si alloy in the hybrid material increases. The grain size of the T6 treated Al-Mg-Si alloy is similar to that of one heat-treated at 773K for 1h. The interface region where the micro-hardness becomes large from the pure Al to the Al-Mg-Si alloy widens with an increasing heat temperature. The hybrid material with a macro-interface parallel to the tensile direction experiences increased tensile strength, 0.2 % proof stress and the decreased elongation after T6 heat treatment. On the other hand, in the vertical direction to the tensile direction, there is no great difference with heat treatment. The bending strength of the hybrid material with a long macro-interface to the bending direction is higher than that with a short macro-interface, which is improved by heat treatment. The hybrid material with a long macro-interface to the bending direction is fractured by cracking through the eutectic structure in the Al-Mg-Si alloy. However, in the hybrid material with a short macro-interface, the bending deformation is observed only in the limited pure Al.

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

Strengthening of Fiber-Reinforced $\gamma$-LiAlO$_2$ Matrixes for Molten Carbonate Fuel Cell by Laminatin (용융탄산염 연료전지용 화이버 강화 $\gamma$-LiAlO$_2$ 매트릭스의 적층에 의한 강도 증진)

  • 현상훈;조성철;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.107-115
    • /
    • 1999
  • Microstructural variation and strengthening effects with lamination methods of alumina fiber-reinforced ${\gamma}$-LiAlO2 matrixes for Molten Carbonate Fuel Cell(MCFC) were studied. The porosities of all matrix laminated by hot-pressing of two green sheets under 1 kg/$\textrm{cm}^2$ at 45$^{\circ}C$ for 1 min and by double-casting which the second layer cast on the first green sheet dried for 3.5h were more than 50%. The strength of the Al2O3 fiber-reinforced matrix prepared by lamination was enhanced by 70% in comparison with the non-laminated matrix (115 gf/$\textrm{mm}^2$) and the strength-directionality due to fiber-orientation also could be removed. The strength of matrixes laminated by triple-casting was higher than that of the double-cast matrix, but triple-cast matrix showed the directionality with the casting direction, and furthermore its porosity was less than 50%. Although the strength of matrixes laminated by double-casting (195 gf/$\textrm{mm}^2$) is slightly less than that of matrixes laminated by hot-pressing (212 gf/$\textrm{mm}^2$), the double-casting method was evaluated to be more efficient laminating process in MCFC matrix processing.

  • PDF