• 제목/요약/키워드: casting body

검색결과 125건 처리시간 0.024초

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • 제47권6호
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Study on the Manufacturing techniques & Conservation of Iron Pot from Cheonmachong Ancient Tomb (천마총 출토 철부(鐵釜)의 제작기법 및 보존처리)

  • Lee, Seung Ryul;Shin, Yong Bi;Jung, Won Seob
    • Journal of Conservation Science
    • /
    • 제30권3호
    • /
    • pp.263-275
    • /
    • 2014
  • It's shown how to proceed the study on Manufacturing techniques & Conservation to the Iron Pot from Cheonmachong Ancient Tomb(the 155th Tomb in Hwangnam-dong). In order to investigate manufacturing techniques of the Iron Pot, some parts of the relic were gathered. After mounting, polishing and etching on the relic, analyzing the metal microstructure was conducted. Also it's conducted a SEM-EDS analysis on the nonmetallic inclusion. White iron structure was observed in the metallurgical structure inspection, SEM-EDS analysis. It seems to be dried slowly at room temperature after casting, doesn't look as particular heat treatment to improve brittleness. It is estimated that it's as the handle seam side were verified about 3cm inch wide, 1.5 thick in center of body, so 2 separate half-completed products was cast with width-type mould. The manufacturing techniques Using white cast iron structure, width-type mould are observable to the Iron Pot excavated from Sikrichong Ancient Tomb & Hwangnamdaechong grand Ancient Tomb around those were constructed the same time. It's able to recognize that it's almost identical manufacturing techniques at that time. Conservation is generically following those are survey of pretreatment, foreign material removal, stabilization, restoration and color matching in the order. cleaning & drying were added to the process as occasion demands. The strengthening treatment were difficult with artifact's volume, low concentration Paraloid NAD-10 solution was spread two or three times with a brush, surface hardening also came up with 15wt% Paraloid NAD-10 solution after the conservation was complete. There were connection & restoration for the restoration to the damage after modeling forms that it's similar to damaged parts by using the Fiber Reinforced Plastic resins(POLYCOAT FH-245, mold laminated type). Throughout this research, capitalizing on accumulations of measurements about the production technique of Iron Pot in the time of the fifth and 6th centuries is no less important than the Iron artifact's conservation for a better study in the future.

A Study on the "Holing-Bowl(받침그릇, 承盤) for the Jung-Byoung(정병, 淨甁)" or The Sacred Water-pot (정병 받침그릇(淨甁 承盤) 살핌 -고려불화(佛畵)-수월관음그림(水月觀音圖)으로 -)

  • Ghang, soon-hyoung
    • Korean Journal of Heritage: History & Science
    • /
    • 제34권
    • /
    • pp.124-136
    • /
    • 2001
  • Among many different types of wares, we have amazing Sacred Water-pot(따르개, 注子) from Goryo-period(고리, 高麗, 918-1392). The stylistic peculiarity of Jung-Byoung(정병, 淨甁) is described in "Goryo-Dhogyoung, 고리도경, 高麗圖經", the classical design canon. It is said, "A sharpened mouth with narrow and prolonged neck is attached upon the broad mouth with thicker and even longer neck of the pot whose body intimates to the shape of melon." One could find this Jung-Byoung similar to the Indian drinking water jar, Kundika, which has been. even today, an everyday article in houses as well as in temples. In the early Buddhist cult, the object had been adopted as personal belonging of the Bodhisattvas(보살, 菩薩), especially of the Bodhisattva Avalokitesvara(관세음보살,觀世音菩薩). In short, the purifying character of water is met by the sacred ware to deliver the refreshing Sweet-Water(Holy-Water, 깨맑물, 단물, 단이슬물, 정수, 감로, 감로수, 성수, 淨水, 甘露, 甘露水, 聖水): For the holy purpose of fulfilling the thirst of people, of symbolozing the virtuous dharma. Thus, Ggamslkh-Byoung(깨맑병,淨水), the literal Korean name, denotes purifying and clarifying and clarifying water-pot to us. Among many other Asian countries, India, China, Korea, and Japan have a profound cult of the sacred water-pot(Ggamalkh-Byoung, Jung-Byoung, 깨맑병, 정병, 정수병, 감로병, 감로수병, 淨甁, 淨水甁, 甘露甁, 甘露水甁). Therefore, this charming holy object drew much attention not only from master artisans to shape and deliver them to people but also from painters and sculptors for their endowment of the sacred images dedicated to Buddha(부처,佛,佛陀). In China, the sacred water pot emerged in the period of Tang(당, 唐, 618~907)-Period and underwent much sophistication later on, I. e., from earthenware, ceramic-porcelain, bronze, and silver. However, the following represents a challenge to the well-known Goryo-Thangka(고리불화, 高麗佛畵) Painting of Bodhisattva Avalokitesvara to our speculation on the Sacred Water-pot(정병, 淨甁). The image suggests, when examined closely, that the Sacred Water-pot has been accompanied by, or placed in, a transparent glasswere(유리그릇) or crystalbowl(수정그릇)! We have no other physical proof of the existence of such a Holding-Bowl(받침그릇, 承盤), except for in this particular painting. This Holding-Bowl would have not been a mere elaboration on the practicality of controling the drips from the mouth of the pot. As in the chapter on Tang-ho(탕호, 湯壺), or thermal bowl, in the "Goryo-Dhogyoung" it advises readers that this style of bowl is to be filled with hot water, and thus function as a preserver of heat in the water inside the pot. As an offering to the Buddha, the Sacred Water-pot could have been used for serving him hot tea. Hence the sacred bottle is to contain the refreshing water, the water transcends to nectar, and the nectar is prepared as a nectar tea to offer the Buddha. For both the Holding-Bowl of Ggamalkh-Byoung(Jung-Byoung)and the Celestial-Robe(날개옷, 天衣) of the Bodhisattva Avalokitesvara, whose specified character is the Water-Moon(수월, 水月) in this particular Thangka(불화, 佛畵) painting, the transparency is essential. This is to refer to the purity and the lucid clarity of Bodhisattva Avalokitesvara and at a deeper level, to refer to the world of Buddhas-the Tushita(Paradise, Heaven, Eden, 극락, 불세계, 極樂, 佛世界). Howerver, without the discovery of an actual Holding-Bowl, accompanied by a Sacred Water-pot, such speculation will necessarily remain hypothetical. Nevertheless, there is an abundance of evidence of our ancient craftsmanship in jade and ctystal, dating back to the Bronze Age(1000~2B.C.) in Korea. By the time of the Three Kingdom-Period(삼국시대, 三國時代, 57B.C.~935A.D.), and especially the Silla(신라, 新羅, 57B.C.~935A.D.)-Empire, the jade and crystal ornamentation had become very intricate indeed. By the Goryo-Period(918~1392) and Chosun-Period(조선, 朝鮮,1392~1910),crystal-ware and jade art were popular in houses and Buddhist temples, whose master artsanship was heightened in the numerous Sarira-Cases(사리그릇, 舍利器), containing relics and placed inside Stupas(탑, 투, 搭)! Therefore, discovering a tiny part of the crystal or jade Holding-Bowl for the Sacred Water-pot and casting full light on this subject, would not be totally impossible. Lastly the present article shares the tiny hope for a sudden emergence of such a Holding-Bowl.

Biomass and distribution of Antarctic Krill, Euphausia superba, in the Northern part of the South Shetland Islands, Antarctic Ocean (남극 남쉐틀란드 군도 북부 해역의 크릴 분포 및 자원량)

  • KANG Donhyug;HWANG Doojin;KIM Suam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제32권6호
    • /
    • pp.737-747
    • /
    • 1999
  • To estimate biomass and distribution of the Antarctic krill (Euphausia superba), hydroacoustic survey was conducted on board of R/V Yuzhmorgeologiya, which was chartered by Korea Antarctic Research Program (KARP) group from 18 to 21 December 1998, in the northern part of the South Shetland Islands, Antarctic Ocean, The scientific echo sounder (towing body type) used was EK- 500 (SIMRAD, Norway) with echo integrator (BI-500) at 38 kHz frequency and recorded mean backscattering cross-section coefficient (SA) per 1 $mile^2$ of sea surface. Also, Bongo net sampling was carried out to determine the size of krill and CTD (Conductivity, Temperature and Depth) casting to understand physical structure. Water column was divided into 5 layers (22$\~$65 m, 65$\~$115 m, l15$\~$65 m, 165$\~$215 m and 215$\~$315 m) to know vertical distribution of krill biomass. The standard length of krill collected was between 30 mm and 51 mm, and adult krill had single mode (41 mm). Maximum horizontal length of krill patch was about 35 nautical mile and vertical thickness was about 275 m. High density of krill was appeared in frontal area between Circumpolar Deep Water (>$1^{\circ}C$) and very low temperature water mass (< $-0.5^{\circ}C$) that originate from Weddell Sea. According to the results calculated using target strength equation, krill density was totally higher in continental slope and open water areas than in coastal area. In the study area, krill seems to distribute in depth; density was low at first layer ($\={\rho}=17.0\;g/m^2$) and higher at fourth layer ($\={\rho}=40.19\;g/m^2$). The estimated krill biomass at total survey area and water column was about 2.77 million metric ion ($\={\rho}=151.0\;g/m^2$) and coefficient of valiance ( CV, $\%$) was 19.92. The proportions and biomass of krill biomass at each layer were as follows; layer 1 ($11.3\%$, 0.31 million metric ton, CV=16.24), layer 2 ($13.3\%$, 0.37 million metric ton, CV=34.91), layer 3 ($23.7\%$, 0.66 million metric ton, CV=41.5), layer 4 ($26.6\%$, 0.74 million metric ton, CV=27.84) and layer 5 ($25\%$, 0.69 million metric ton, CV= 26.83).

  • PDF

The Distribution of Catch by Korean Tuna Purse Seiners in the Western Pacific Ocean (서부태평양(西部太平洋)에서 조업(操業)한 한국(韓國) 다랑어 선망어선(旋網漁船)의 어획량분포(漁獲量分布))

  • Kim, Seon-Woong;Kim, Jin-Kun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • 제7권2호
    • /
    • pp.182-200
    • /
    • 1995
  • Thirty two vessels of the Korean purse seiner had been operated in the Western Pacific Ocean for mainly skipjack tuna, Katsuwonus pelmis LINNAEUS and yellowfin tuna, Thunnus albacares BONNATERRE from January to December in 1991. Among them, fourteen vessels were chosen for this research. During the year their daily operated vessels totalled 4,153 vessels, their total casting net were 2,982 times, in caught 1,798 times, and their total catch was 106,300 M/T. We investigate the distribution of their catch by species, by body size, and by surfance water temperature, and also investigate the distribution of their catch by month and section of the sea, where the sections are separated by 30' of longitude and latitude from the monthly operated sea. We summarize these as follows : 1. The rate of catch by species is 75r/o skipjack tunas, 22.3% yellowfin tunas, and 2.7% bigeye and other tunas. 2. Of the caught skipjack tunas, those of weight 2.0~10kg are most and 68%, those of 1.5~8kg are 11.6%, and those of 3.0~8kg are 9.9%. Of the caught yellowfin tunas, those of weight 5~50kg and 10~50kg are most and 23.1%, and 28.3% respectively, those of 20~50kg are 15.8%, weight 30~50kg are 12.5%, and weight 2~50kg are 9.7%. 3. On the distribution of catch by surface water temperature, 49% of catch are taken between $29.0^{\circ}C$ and $29.4^{\circ}C$, 37% are taken between $29.5^{\circ}C$ and $29.9^{\circ}C$, and about 6% are taken between $28.5^{\circ}C$ and $28.9^{\circ}C$, but very little, only about 1% are taken below $28.4^{\circ}C$ and above $30.5^{\circ}C$. 4. On the distribution of catch by month and section of sea, skipjack tunas are most caught 10,618M/T in August and 10,412M/T in September in the section of Lat. $3^{\circ}{\sim}6^{\circ}S$ and Long. $174^{\circ}E{\sim}176^{\circ}W$, caught much 8,825M/I' in June and 8,057M/T in January in section of Lat. $1^{\circ}S{\sim}3^{\circ}N$ and Long. $142^{\circ}{\sim}151^{\circ}$E, but caught very little in May, November and December in the costal area of New Guinea. Yellowfin tunas are mostly caught 4,070M/T in June in the section of Lat. $0^{\circ}{\sim}4^{\circ}$N and Long. $142^{\circ}{\sim}151^{\circ}$E, and caught much over 2,000M/T in February~April and October~December in the section of coastal area and near islands, but caught very little in distant water area.

  • PDF