• Title/Summary/Keyword: cast shadow removal

Search Result 9, Processing Time 0.033 seconds

An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance (지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Cast-Shadow Elimination of Vehicle Objects Using Backpropagation Neural Network (신경망을 이용한 차량 객체의 그림자 제거)

  • Jeong, Sung-Hwan;Lee, Jun-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.32-41
    • /
    • 2008
  • The moving object tracking in vision based observation using video uses difference method between GMM(Gaussian Mixture Model) based background and present image. In the case of racking object using binary image made by threshold, the object is merged not by object information but by Cast-Shadow. This paper proposed the method that eliminates Cast-Shadow using backpropagation Neural Network. The neural network is trained by abstracting feature value form training image of object range in 10-movies and Cast-Shadow range. The method eliminating Cast-Shadow is based on the method distinguishing shadow from binary image, its Performance is better(16.2%, 38.2%, 28.1%, 22.3%, 44.4%) than existing Cast-Shadow elimination algorithm(SNP, SP, DNM1, DNM2, CNCC).

  • PDF

An Improved Cast Shadow Removal in Object Detection (객체검출에서의 개선된 투영 그림자 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Kim, Yu-Sung;Kim, Jae-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.889-894
    • /
    • 2009
  • Accompanied by the rapid development of Computer Vision, Visual surveillance has achieved great evolution with more and more complicated processing. However there are still many problems to be resolved for robust and reliable visual surveillance, and the cast shadow occurring in motion detection process is one of them. Shadow pixels are often misclassified as object pixels so that they cause errors in localization, segmentation, tracking and classification of objects. This paper proposes a novel cast shadow removal method. As opposed to previous conventional methods, which considers pixel properties like intensity properties, color distortion, HSV color system, and etc., the proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the background scene. Then, the product of the outcomes of application determines whether the blob pixels in the foreground mask comes from object blob regions or shadow regions. The proposed method is simple but turns out practically very effective for Gaussian Mixture Model, which is verified through experiments.

  • PDF

Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System (비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거)

  • Lee, Young-Sook;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.574-578
    • /
    • 2009
  • Real-time object detection for distinguishing a moving object of interests from the background image in still image or video image sequence is an essential step to a correct object tracking and recognition. Moving cast shadow can be misclassified as part of objects or moving objects because the shadow region is included in the moving object region after object segmentation. For this reason, an algorithm for shadow removal plays an important role in the results of accurate moving object detection and tracking systems. To handle with the problems, an accurate algorithm based on the features of moving object and shadow in color space is presented in this paper. Experimental results show that the proposed algorithm is effective to detect a moving object and to remove shadow in test video sequences.

  • PDF

Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video (차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류)

  • Shin, Wook-Sun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Generally, moving objects in surveillance video are extracted by background subtraction or frame difference method. However, moving cast shadows on object distort extracted figures which cause serious detection problems. Especially, analyzing vehicle information in video frames from a fixed surveillance camera on road, we obtain inaccurate results by shadow which vehicle causes. So, Shadow Elimination is essential to extract right objects from frames in surveillance video. And we use shadow removal algorithm for vehicle classification. In our paper, as we suppress moving cast shadow in object, we efficiently discriminate vehicle types. After we fit new object of shadow-removed object as three dimension object, we use extracted attributes for supervised learning to classify vehicle types. In experiment, we use 3 learning methods {IBL, C4.5, NN(Neural Network)} so that we evaluate the result of vehicle classification by shadow elimination.

Shadow Removal in Front Projection System using a Depth Camera (깊이 카메라를 이용한 전방 프로젝션 환경에서 그림자 제거)

  • Kim, Jaedong;Seo, Hyunggoog;Cha, Seunghoon;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2015
  • One way to create a visually immersive environment is to utilize a front projection system. Especially, when enough space is not available behind the screen, it becomes difficult to install a back projection system, making the front projection an appropriate choice. A drawback associated with the front projection is, however, the interference of shadow. The shadow can be cast on the screen when the user is located between the screen and the projector. This shadow can negatively affect the user experience and reduce the sense of immersion by removing important information. There have been various attempts to eliminating shadows cast on the screen by using multiple projectors that compensate for each other with missing information. There is trade-off between calculataion time and desired accuracy in this mutual compensation. Accurate estimation of the shadow usually requires heavy computation while simple approaches suffer from inclusion of non-shadow regions in the result. We propose a novel approach to removing shadows created in the front projection system using the skeleton data obtained from a depth camera. The skeleton data helps accurately extract the shape of the shadow that the user cast without requiring much computation. Our method also utilizes a distance field to remove the afterimage of shadow that may occur when the user moves. We verify the effectiveness of our system by performing various experiments in an interactive environment created by a front projection system.

Vehicle Shadow Removal For Intelligent Traffic System

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • The limited number of roads and the increasing number of vehicles demand the automatic regulation of overspeed vehicles, illegal vehicles, and overloaded vehicles and the automatic charge calculation depending on the type of the vehicle. To meet such requirements, it is important to remove the shadow of the vehicle as processing and recognizing an image captured by a camera. The shadow of the vehicle is likely to cause misclassification of the vehicle type due to diverse errors and mistakes occurring when detecting geometrical properties of the vehicle. In case that shadows of two different vehicles are overlapped, not only the type of the vehicles may be misclassified but also it is difficult to accurately identify the type of the vehicles. In this paper, we propose a robust algorithm to remove the shadow of a vehicle by calculating the luminance, the chrominance, the gradient density of the cast shadow from information acquired using the image subtraction of the background, and to recognize the substantial vehicle figure. Even when it is hard to detect and split a target vehicle from its shadow as shadows of vehicles are attached to each other, our robust algorithm can detect the vehicle figure only. We implemented our system with a general camera and conducted experiments on various vehicles on general roads to find out our vehicle shade removal algorithm is efficient when detecting and recognizing vehicles.

Fusion of Background Subtraction and Clustering Techniques for Shadow Suppression in Video Sequences

  • Chowdhury, Anuva;Shin, Jung-Pil;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.231-234
    • /
    • 2013
  • This paper introduces a mixture of background subtraction technique and K-Means clustering algorithm for removing shadows from video sequences. Lighting conditions cause an issue with segmentation. The proposed method can successfully eradicate artifacts associated with lighting changes such as highlight and reflection, and cast shadows of moving object from segmentation. In this paper, K-Means clustering algorithm is applied to the foreground, which is initially fragmented by background subtraction technique. The estimated shadow region is then superimposed on the background to eliminate the effects that cause redundancy in object detection. Simulation results depict that the proposed approach is capable of removing shadows and reflections from moving objects with an accuracy of more than 95% in every cases considered.

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.