• 제목/요약/키워드: caspases

검색결과 227건 처리시간 0.019초

Survivin, Possible Marker and Prognostic Factor in Oral Squamous Cell Carcinomas

  • Kim, Young-Youn;Kim, Myung-Jin;Choi, Keum-Kang;Hong, Seong-Doo;Myoung, Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.71-82
    • /
    • 2008
  • Survivin is a member of the inhibitors of apoptosis (IAP) family that have been known to inhibit activated caspases in apoptosis. In contrast to most IAP family members, survivin mRNA is expressed during fetal development, is not found in normal adult tissues and is overexpressed again in the cancer. Though survivin expression has been documented in most human cancers, little is known about its expression in OSCC and its potential value as a predictor of cancer survival. The purpose of this study was to investigate survivin expression in OSCC and to evaluate its value as a prognostic marker. We evaluated survivin expressions in cancer lines and OSCC samples and investigated the relationships between survivin expressions and clini-co-pathological parameters including stage, differentiation, proliferation, lymph node metastasis, blood vessel density, and gelatinolytic activity. With immunohistochemistry, we analyzed survivin expression in 38 OSCCs. Patients' clinico-pathological parameters and their survival rate were analyzed to reveal their correlations with Survivin expressions. We cultured oral cancer cell lines and evaluated the correlation between gelatinolytic activities and survivin expressions of them. Survivin protein was observed both in nuclei and cytoplasm of tumor specimens while little or not observed in normal gingival mucosal tissues. Additionally, survivin expressions were correlated with lymph node metastasis, tumor proliferation and survival rate. Survivin expression was observed in 100% of 38 samples of OSCC and its expression levels are statistically associated with the proliferative activity of the tumors, lymph node metastasis and the survival of the patients. Based on these results, survivin is commonly expressed in OSCC and may thus provide valuable prognostic information related with lymph node metastasis, proliferation and survival rate as well as a potential therapeutic target in OSCC.

Korean Red Ginseng water extract arrests growth of xenografted lymphoma cells

  • Park, Jae Gwang;Son, Young-Jin;Aravinthan, Adithan;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.431-436
    • /
    • 2016
  • Background: Although numerous studies of the anticancer activities of Korean Red Ginseng (KRG) have been performed, the therapeutic effect of KRG on leukemia has not been fully elucidated. In this study, we investigated the antileukemia activities of KRG and its cellular and molecular mechanisms. Methods: An established leukemia tumor model induced by xenografted T cell lymphoma (RMA cells) was used to test the therapeutic activity of KRG water extract (KRG-WE). Direct cytotoxic activity of KRG-WE was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The immunomodulatory activities of KRG-WE were verified by immunohistochemistry, nitric oxide production assay. The inhibitory effect of KRG-WE on cell survival signaling was also examined. Results: Orally administered KRG-WE reduced the sizes of tumor masses. Levels of apoptosis regulatory enzymes and cleaved forms of caspases-3 and -8 were increased by this extract. In addition, expression of matrix metalloproteinase-9, a metastasis regulatory enzyme, was decreased by KRG-WE treatment. The proportion of CD11c+ cells was remarkably increased in the KRG-treated group compared to the control group. However, KRG-WE did not show significant direct cytotoxicity against RMA cells. Conclusion: Our results strongly suggest that the KRG might have antileukemia activity through CD11c+ cell-mediated antitumor immunity.

도핵승기탕(桃核承氣湯) 자궁경부암세포(子宮經部癌細胞)(HeLa cell)의 apoptosis에 미치는 영향(影響) (Dohaekseungkitang extract induced apoptosis in Human Cervical carcinoma HeLa cells)

  • 강용구;안규환;공복철;김송백;조한백
    • 대한한방부인과학회지
    • /
    • 제19권2호
    • /
    • pp.77-91
    • /
    • 2006
  • Purpose : To address the ability of Dohaekseungkitang (DST: a commonly used herb formulation in Korea, Japan and China to have anti-cancer effect on cervical carcinoma), we investigated the effects of DST on programmed cell death (apoptosis) in HeLa human cervical carcinoma cells. Methods : We cultured HeLa cell which is human metrocarcinoma cell in D-MEM included 10% fetal bovine serum(Hyclone Laboratories) below $37^{\circ}C$, 5% CO2. Then we observed apoptosis of log phage cell which is changed cultivation liquid 24 Hours periodically. Results : After the treatment of DST for 48 hours, apoptosis occurred in a dose-dependent manner. In this study, we have shown that DST induces calpain and the associated caspase-8 and -9 activations. Apoptosis was prevented by pre-incubation of the cells with the calcium cHeLator-BAPTA-AM, calcium channel blocker-Nif edipine or Ryonidine agonist-Ryonidine peptide, implicating calcium in the apoptotic process. Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, especially in calcium-related apoptosis. However this study showed 1hat either calpain inhibitor-calpastin or caspase-3 inhibitor-DEVD- did not blocked the herb formulation-induced apoptosis in HeLa human cervical carcinoma cells. D ST initiates a cell death pathway that is partially dependent of caspases. DST-induced apoptosis requires caspase-independent mechanism. Conclusion : We conclude that DST-induced calpain activation triggers the intrinsic apoptotic pathway in which caspase-independent mechanism is also involved.

  • PDF

Proteasome 억제에 의한 P53의 발현과 미토콘드리아 막 전압의 소실로 TRAIL에 저항하는 폐암세포의 사멸 강화 (The proteasome inhibition enhances apoptosis by P53 expression and the dissipation of mitochondrial transmembrane potential in TRAIL-resistant lung cancer cells)

  • 설재원;박상열
    • 대한수의학회지
    • /
    • 제49권1호
    • /
    • pp.1-8
    • /
    • 2009
  • The ubiquitin-proteasome mediated protein degradation pathway plays an important role in regulating both cell proliferation and cell death. Proteasome inhibitors are well known to induce apoptosis in various human cancer cell lines. We investigated the effect of combined treatment with proteasome inhibitor and TRAIL, and a possible mechanism of the enhancing apoptosis by the both treatment, on TRAIL-resistant non-small cell lung cancer. A549 cells were exposed to the N-Acetyl-Leu-Leu-Norleu-al (ALLN) as a proteasome inhibitor and then treated with recombinant TRAIL protein. In A549 cells under proteasome inhibition conditions by pretreatment with ALLN, TRAIL treatment significantly decreased cell viability compared to that ALLN and TRAIL alone treatment. Also, the both treatment induced cell damage through DNA fragmentation and p53 expression. In addition, the combined treatment of both markedly increased caspase-8 activation, especially the exposure for 2 h, and Bax expression and induced the dissipation of mitochondrial transmembrane potential in A549 cells. Taken together, these findings showed that proteasome inhibition by ALLN enhanced TRAIL-induced apoptosis via DNA degradation by activated P53 and mitochondrial transmembrane potential loss by caspase-8 activation and bax expression. Therefore, our results suggest that proteasome inhibitor may be used a very effectively chemotherapeutic agent for the tumor treatment, especially TRAIL-resistant tumor cell.

Protein Disulfide Isomerase Is Cleaved by Caspase-3 and -7 during Apoptosis

  • Na, Kyung Sook;Park, Byoung Chul;Jang, Mi;Cho, Sayeon;Lee, Do Hee;Kang, Sunghyun;Lee, Chong-Kil;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.261-267
    • /
    • 2007
  • Apoptotic signals are typically accompanied by activation of aspartate-specific cysteine proteases called caspases, and caspase-3 and -7 play crucial roles in the execution of apoptosis. Previously, using the proteomic approach, protein disulfide isomerase (PDI) was found to be a candidate substrate of caspase-7. This abundant 55 kDa protein introduces disulfide bonds into proteins (via its oxidase activity) and catalyzes the rearrangement of incorrect disulfide bonds (via its isomerase activity). PDI is abundant in the ER but is also found in non-ER locations. In this study we demonstrated that PDI is cleaved by caspase-3 and -7 in vitro. In addition, in vivo experiment showed that it is cleaved during etoposide-induced apoptosis in HL-60 cells. Subcellular fractionation showed that PDI was also present in the cytosol. Furthermore, only cytosolic PDI was clearly digested by caspase-3 and -7. It was also confirmed by confocal image analysis that PDI and caspase-7 partially co-localize in both resting and apoptotic MCF-7 cells. Overexpression of cytosolic PDI (ER retention sequence deleted) inhibited cell death after an apoptotic stimulus. These data indicate that cytosolic PDI is a substrate of caspase-3 and -7, and that it has an anti-apoptotic action.

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway

  • Jo, Hantae;Oh, Jeong-Hyun;Park, Dong-Wook;Lee, Changho;Min, Churl K.
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.96-104
    • /
    • 2020
  • Objectives: Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods: Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (∆Ψm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results: Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ∆Ψm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate-induced apoptosis in SKOV3 and HEC-1A cells. Conclusion: These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

Combined Treatment with Coptidis Rhizoma Extract and Arsenic Trioxide Enhanced Apoptosis through Diverse Pathways in H157 Cells

  • Youn, Myung-Ja;Kim, Yun-Ha;Kim, Hyung-Jin;Song, Je-Ho;Jeon, Ho-Sung;Yu, Dong-Hee;Sul, Jeong-Dug;So, Hong-Seob;Park, Rae-Kil
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1449-1459
    • /
    • 2009
  • Coptidis rhizoma (huanglian) is an herb that is widely used in traditional Chinese medicine that has recently been shown to possess anticancer activity. However, the molecular mechanism underlying the anticancer effects of this herb is poorly understood. In this study, we investigated the anticancer activity of a combination of CR extract and arsenic trioxide, as well as the apoptotic pathway associated with its mechanism of action in human lung cancer H157 cells. Combined treatment of H157 cells with CR extract and arsenic trioxide resulted in significant apoptotic death. In addition, combined treatment with CR extract and arsenic trioxide acted in concert to induce a loss of mitochondrial membrane potential (${\Delta}{\Psi}$), the release of cytochrome c from mitochondria, and an increase in the expression of pro-apoptotic p53 and Bax protein, which resulted in activation of caspases and apoptosis. CR extract combined with arsenic trioxide also increased the lipid peroxidation, mRNA expression of DR4 and DR5 and caspase-8 activity. These data indicate that combined treatment with CR extract and arsenic trioxide enhanced apoptotic cell death in H157 cells through diverse pathways, including mitochondrial dysfunction and death receptors, particularly DR4 and DR5. Thus, this treatment may be an effective from of chemotherapy.

Lack of Association of BIRC5 Polymorphisms with Clearance of HBV Infection and HCC Occurrence in a Korean Population

  • Lee, Jin-Sol;Kim, Jeong-Hyun;Park, Byung-Lae;Cheong, Hyun-Sub;Kim, Jason-Y.;Park, Tae-Joon;Chun, Ji-Yong;Bae, Joon-Seol;Lee, Hyo-Suk;Kim, Yoon-Jun;Shin, Hyoung-Doo
    • Genomics & Informatics
    • /
    • 제7권4호
    • /
    • pp.195-202
    • /
    • 2009
  • BIRC5 (Survivin) belongs to the inhibitor of apoptosis gene family. The BIRC5 protein inhibits caspases and consequently blocks apoptosis. Thus, BIRC5 contributes to the progression of cancer allowing for continued cell proliferation and survival. In this study, we identified eight sequence variants of BIRC5 through direct DNA sequencing. Among the eight single nucleotide polymorphisms (SNPs), six common variants with frequencies higher than 0.05 were selected for larger-scale genotyping (n=1,066). Results of the study did not show any association between the promoter region polymorphisms and the clearance of hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) occurrence. This is in line with a previous study in which polymorphisms in the promoter region does not influence the function of BIRC5. Initially, we were able to detect a signal with the +9194A>G, which disappeared after multiple corrections but led to a change in amino acid. Similarly, we were also able to detect an association signal between two haplotypes (haplotype-2 and haplotype-5) on the onset age of HCC and/or HCC occurrence, but the signals also disappeared after multiple corrections. As a result, we concluded that there was no association between BIRC5 polymorphisms and the clearance HBV infection and/or HCC occurrence. However, our results might useful to future studies.