• Title/Summary/Keyword: caspase-6

Search Result 538, Processing Time 0.037 seconds

6-Hydroxydopamine-induced Adaptive Increase in GSH Is Dependent on Reactive Oxygen Species and Ca2+ but not on Extracellular Signal-regulated Kinase in SK-N-SH Human Neuroblastoma Cells

  • JIN Da-Qing;Park Byung CHUL;KIM Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.256-262
    • /
    • 2005
  • We examined the signaling molecules involved in the 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and increase in cellular glutathione (GSH) level in SK-N-SH cells. The 6-OH-DA-induced cell death was significantly prevented by the pretreatment with N-acetylcysteine (NAC), a thiol antioxidant, and BAPTA, an intracellular $Ca^{2+}$ chelator. Although 6-OHDA induced ERK phosphorylation, the pretreatment with PD98059, an ERK inhibitor, did not block 6-OHDA-induced cell death. In addition, the 6-OHDA-induced activation of caspase-3, a key signal for apoptosis, was blocked by the pretreatment with NAC and BAPTA. While the level of reactive oxygen species (ROS) was significantly increased in the 6-OHDA-treated cells, the cellular GSH level was not altered for the first 6-hr exposure to 6-OHDA, but after then, the level was significantly increased, which was also blocked by the pretreatment with NAC and BAPTA, but not by PD98059. Depletion of GSH by pretreating the cells with DL-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, rather significantly potentiated the 6-OHDA-induced death. In contrast to the pretreatment with NAC, 6-OHDA-induced cell death was not prevented by the post-treatment with NAC 30 min after 6-OHDA treatment. The results indicate that the GSH level which is increased adaptively by the 6-OHDA-induced ROS and intracellular $Ca^{2+}$ is not enough to overcome the death signal mediated through ROS-$Ca^{2+}$ -caspase pathway.

Neuroprotective Effect of l-Deprenyl Against 6-OHDA-Induced Dopamine Depletion in Rat Striatum and 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells (흰쥐 선조체에서 6-OHDA-유도 도파민 고갈 및 SH-SY5Y 세포주에서 6-OHDA-유도 산화적 스트레스에 대한 l-Deprenyl의 신경 보호효과)

  • Kim Eun-Mi;Choi Sinkyu;Lee Kyunglim;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.355-364
    • /
    • 2005
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has long been used to form a Parkinson's disease (PD) model by inducing the lesion in catecholaminergic pathways, particularly the nigrostriatal dopamine (DA) pathway. Whereas l-deprenyl, a selective inhibitor of monoamine oxidase (MAO) type B, is now widely used in the treatment of PD, the precise action mechanism of the drug remains elusive. In this study, we investigated whether l-deprenyl shows protective effect against the DA depletion induced by 6-OHDA in rat brain, and against 6-OHDA-induced neurotoxicity and oxidative stress in catecholaminergic neuroblastoma SH-SY5Y cells that are known to lack MAO-B activity. Pretreatment of l-deprenyl significantly enhanced the striatal DA, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and 3-methoxytyramine levels compared to the untreated 6-OHDA-lesioned rat, indicating that l-deprenyl pretreatment prevents 6-OHDA-induced depletion of not only striatal dopamine but also its metabolites. Treatment of 6-OHDA for 24hrs decreased the cell viability and increase the generation of ROS in dose-dependent manners. We further investigated whether caspase activity is involved in the action of l-deprenyl. Treatment of l-deprenyl $(0.1\~100{\mu}M)$ did not produce any changes in 6-OHDA-induced cleavage of poly (ADP-ridose) polymerase in SH-SY5Y cells. Our results suggest that the neuroprotective effect of l-deprenyl against 6-OHDA is due to its increased scavenger activity, but independent of inhibition of MAO-B or caspase-3 activation.

Sodium Salicylate(NaSaL) Induces Apoptosis of NCI-H1299 Lung Carcinoma Cells via Activation Caspase-3 Protease (NCI-H1299 폐암 세포주에서 Caspase-3 Protease 활성을 통한 Sodium Salicylate(NaSaL)의 세포고사)

  • Shim, Hyeok;Yang, Sei-Hoon;Bak, Sang-Myeon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : Nonsteroidal anti-inflammatory drugs (NSAIDs) are useful in the chemoprevention of colon cancers. Continuous NSAID use results in a 40% to 50% reduction in the relative risk of colorectal cancer. The precise mechanism by which NSAIDs prevent and/or cause the regression of colorectal tumors is not known. Some investigators have reported that certain NSAIDs induce apoptosis and alter the expression of the cell cycle regulatory genes in some carcinoma cells when administered at a relatively high concentration. However, the possibility of NSAIDs application as chemopreventive agents in lung cancers remains to be elucidated. To address this question, the human lung cancer cell line NCI-H1299 was used to investigate whether or not NSAIDs might induce the apoptotic death of NCI-H1299 cells. Methods : A viability test was carried out using a MTT assay. Apoptosis was measured by flow cytometric analysis and unclear staining(DAPI). The talytic activity of the caspase family was measured by the fluirigenic cleavage of biosubstrates. To define the mechanical basis of apoptosis, western blot was performed to analyze the expression of the death substrates(PARP and ICAD). Results : NaSaL significantly decreased the viability of the NCI-H1299 cells, which was revealed as apoptosis characterized by an increase in the $subG_0/G_1$ population and unclear fragmentation. The catalytic activity of caspase-3 protease began to increase after 24 Hr and reached a peak 30 Hr after treatment with 10 mM NaSaL. In contrast, caspase-6, 8, and 9 proteases did not have a significantly altered enzymatic activity. Consistent with activation of caspase-3 protease, NaSaL induced the cleavage of the protease biosubstrate. Conclusion : NaSaL induces the apoptotic death of NCI-H1299 human lung cancer cells via the activation of caspase-3 protease.

Pseudomonas aeruginosa Exotoxin A Induces Apoptosis in Chemoresistant YD-9 Human Oral Squamous Carcinoma Cell Line Via Accumulation of p53 and Activation of Caspases (항암제에 저항성을 가지는 YD-9 human oral squamous carcinoma cell line에서 Pseudomonas aeruginosa exotoxin A의 p53 단백질 누적과 caspase를 활성화 경로를 통해 유도된 세포자멸사)

  • Kim, Gyoo-Cheon;Gil, Young-Gi
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1047-1054
    • /
    • 2009
  • Oral squamous carcinoma (OSC) cells present resistance to chemotherapeutic agents-mediated apoptosis in the late stages of malignancy. Advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers. It was demonstrated here that Pseudomonas aeruginosa exotoxin A (PEA) significantly decreased the viability of chemoresistant YD-9 cells in the apoptosis mechanism. Apoptotic manifestations were evident through changes in nuclear morphology and generation of DNA fragmentation. PEA treatment induced caspase-3, -6 and -9 cleavage, and activation. These events preceded proteolysis of the caspase substrates poly (ADP-ribose) polymerase (PARP), DNA fragmentation factor 45 (DFF45), and lamin A in YD-9 cells. The reduction of mitochondrial membrane potential, release of cytochrome c and SmacjDlABLO from mitochondria to cytosol, andtranslocation of AlF into nucleus were shown. While p53, p21 and $14-3-3{\gamma}$ were upregulated, cyclin Band cdc2 were downregulated by PEA treatment. Taken together, PEA induces apoptosis in chemoresistant YD-9 cells via activation of caspases, mitochondrial events and regulation of cell cycle genes.

Caspase-3-mediated cleavage of Cdc6 induces nuclear localization of truncated Cdc6 and apoptosis

  • Yim, Hyung-Shin;Jin, Ying-Hua;Park, Byoung-Duck;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.71.1-71.1
    • /
    • 2003
  • We show that Cdc6, an essential initiation factor for DNA replication, undergoes caspase-3-mediated cleavage in the early stages of apoptosis in HeLa cells and SK-HEP-1 cells induced by etoposide, paclitaxel, ginsenoside Rh2, or TRAIL. The cleavage occurs at the SEVD$\^$442//G motif and generates an N-terminal truncated Cdc6 fragment (p49-tCdc6) that lacks the carboxy-terminal nuclear export sequence (NES). Cdc6 is known to be phosphorylated by cyclin A-Cyclin A-dependent kinase 2 (Cdk2), an event that promotes its exit from the nucleus and probably blocks it from initiating inappropriate DNA replication. (omitted)

  • PDF

Inhibitors of apoptosis: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

  • Yoo, Inkyu;Jung, Wonchul;Lee, Soohyung;Cheon, Yugyeong;Ka, Hakhyun
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.533-543
    • /
    • 2022
  • Objective: Caspase-mediated apoptosis plays a crucial role in the regulation of endometrial and placental function in females. Caspase activity is tightly controlled by members of the inhibitors of apoptosis proteins (IAPs) family. However, the expression and regulation of IAPs at the maternal-conceptus interface has not been studied in pigs. Therefore, we determined the expression of IAP family members baculovirus IAP repeat-containing 1 (BIRC1) to BIRC6 at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs at various stages of the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy and analyzed the expression of IAPs. Furthermore, we determined the effects of the steroid hormones estradiol-17β (E2) and progesterone on the expression of IAPs in endometrial explant tissue cultures. Results: During the estrous cycle, BIRC2 and BIRC5 expression varied cyclically, and during pregnancy, endometrial BIRC1, BIRC2, BIRC3, BIRC4, and BIRC5 expression varied in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed IAPs during pregnancy. The BIRC2 and BIR3 mRNAs were localized to luminal epithelial cells, and BIRC4 proteins to glandular epithelial cells in the endometrium. Exposure of endometrial tissues to E2 increased the expression of BIRC6, while progesterone increased the expression of BIRC1, BIRC4, and BIRC6 in a dose-dependent manner. Conclusion: These results indicated that IAPs were expressed in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in a stage-specific manner. In addition, steroid hormones were found to be responsible for the expression of some IAPs in pigs. Together, the results suggested that IAPs may play important roles in endometrial and placental functions by regulating caspase action and apoptosis at the maternal-conceptus interface.

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

Amygdalin Extract from Armeniacae semen Induces Apoptosis in Human COLO 201 Colon Cancer Cells

  • Kim, Kyung-Nam;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.108-121
    • /
    • 2005
  • Backgrounds: Amygdalin (D-mandelonitrile B-gentiobioside), a cynogenic compound, is found in sweet and bitter almond, Persicae semen, and Armeniacae semen. Aqueous extract of amygdalin was made from Armeniacae semen and used in this study. Objectives: Apoptosis is a very important mechanism in cancer treatment. In the present study, it was investigated whether amygdalin induces apoptotic cell death in human COLO 201 colon cancer cells. Materials and Methods: For this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, flow cytometric analysis, reverse transcription-polymerase chain reaction(PR-PCR), western blot analysis, and caspase-3 enzyme assay were performed on COLO 201 cells. Cells treated with amygdalin exhibited several characteristics of apoptosis. Results: Amygdalin treatment enhanced Bax expression and suppressed Bcl-2 expression in COLO 201 cells. Amygdalin also was shown to increase the caspase-3 activity. Conclusions: Amygdalin induces apoptotic cell death via Bax-dependent caspase-3 activation in COLO 201 cells.

  • PDF

Naringin Protects against Rotenone-induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells

  • Kim, Hak-Jae;Song, Jeong-Yoon;Park, Hae-Jeong;Park, Hyun-Kyung;Yun, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.281-285
    • /
    • 2009
  • Rotenone, a mitochondrial complex I inhibitor, can induce the pathological features of Parkinson's disease (PD). In the present study, naringin, a grapefruit flavonoid, inhibited rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We assessed cell death and apoptosis by measuring mitogen-activated protein kinase (MAPKs) and caspase (CASPs) activities and by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Naringin also blocked rotenone-induced phosphorylation of Jun NH2-terminal protein kinase (JNK) and P38, and prevented changes in B-cell CLL/lymphoma 2 (BCL2) and BCL2-associated X protein (BAX) expression levels. In addition, naringin reduced the enzyme activity of caspase 3 and cleavages of caspase 9, poly (ADP-ribose) polymerase (PARP), and caspase 3. These results suggest that naringin has a neuroprotective effect on rotenone-induced cell death in human neuroblastoma SH-SY5Y cells.

Effect of Lycii cortex radicis Extraction on Glioma Cell Viability

  • Kim, Seang-Jae;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.17-26
    • /
    • 2009
  • Objectives: Little information is available regarding the effect of Lycii cortex radicis (LCR) on cell viability in glioma cells. This study was therefore undertaken to examine the effect of LCR on cell survival in U87MG human glioma cells. Methods: Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Reactive oxygen species (ROS) generation was measured using the fluorescence probe DCFH-DA. Activation of Akt and extracellular signal-regulated kinase (ERK) and activation of caspase-3 were estimated by Western blot analysis. Results: LCR resulted in apoptotic cell death in a dose- and time-dependent manner. LCR increased reactive oxygen species (ROS) generation and LCR-induced cell death was also prevented by antioxidants, suggesting that ROS generation played a critical role in LCR-induced cell death. Western blot analysis showed that LCR treatment caused down-regulation of Akt and ERK. The LCR-induced cell death was increased by the inhibitors of Akt and ERK. Activation of caspase-3 was stimulated by LCR and caspase inhibitors prevented the LCR-induced cell death. Conclusion: These findings suggest that LCR results in human glioma cell death through a mechanism involving ROS generation, down-regulation of Akt and ERK, and caspase activation.

  • PDF