• 제목/요약/키워드: cascaded control method

검색결과 71건 처리시간 0.024초

Robust Control of Robot Manipulator with Actuators

  • Jongguk Yim;Park, Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.320-326
    • /
    • 2001
  • A Robust controller is designed for cascaded nonlinear uncertain systems that can be decomposed into two subsystems; that is, a series connection of two nonlinear subsystems, such as a robot manipulator with actuators. For such systems, a recursive design is used to include the second subsystem in the robust control. The recursive design procedure contains two steps. First, a fictitious robust controller for the first subsystem is designed as if the subsystem had an independent control. As the fictitious control, a nonlinear H(sub)$\infty$ control using energy dissipation is designed in the sense of L$_2$-gain attenuation from the disturbance caused by system uncertainties to performance vector. Second, the actual robust control is designed recursively by Lyapunovs second method. The designed robust control is applied to a robotic system with actuators, is which the physical control inputs are not the joint torques, but electrical signals to the actuators.

  • PDF

강인 반복 제어를 이용한 비선영 유도탄 자동조종장치 (A Robust Recursive Control Approach to Nonlinear Missile Autopilot)

  • 남헌성;유준
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.1031-1035
    • /
    • 2001
  • In this paper, a robust recursive control approach for nonlinear system, which is based on Lyapunov stability, is proposed. The proposed method can apply to extended systems including cascaded systems and the stability is guaranteed in the sense of Lyapunov. The recursive design procedure so called “robust recursive control approach” is used to find a stabilizing robust controller and simultaneously estimate the uncertainty parameters. First, a nonlinear model with uncertainties whose bounds are unknown is derived. Then, unknown bounds of uncertainties are estimated. By using these estimates, the stabilizing robust controller is updated at each step. This approach is applied to the pitch autopilot design of a nonlinear missile system and simulation results indicate good performance.

  • PDF

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.

An Improved Control Method for Power Conversion System under a Weak Grid by the Adoption of Virtual Resistors

  • Gao, Ning;Sang, Shun;Li, Rui;Cai, Xu
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.756-765
    • /
    • 2017
  • The control of the power conversion system (PCS) in a battery energy storage system has a challenge due to the existence of grid impedance. This paper studies an impedance model of an LCL-based PCS in the d-q domain. The feature of a PCS connected to a weak grid is unveiled by use of an impedance model and a generalized Nyquist criterion. It is shown that the interaction between grid impedance and the PCS destabilizes the cascaded system in certain cases. Therefore, this paper proposes a novel control method that adopts virtual resistors to overcome this issue. The improvement in the control loop leads the PCS to a more stable condition than the conventional method. Impedance measurement is implemented to verify the correctness of the theoretical analysis. Experimental results obtained from a down-scaled prototype indicate that the proposed control method can improve the performance of the PCS under a weak grid.

열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식 (Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation)

  • 김태경;박대수;오성철
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.569-575
    • /
    • 2020
  • 최근, 화석연료 고갈과 온실 가스 배출에 대한 우려가 높아지면서 신·재생 에너지 기술에 대한 연구가 주목을 받고 있다. 휴대용 전자기기 및 웨어러블 디바이스의 수요가 증가하고 IT기기들이 소형화되면서 배터리의 크기, 사용시간 등의 한계를 극복하기 위한 기술로 에너지 하베스팅이 있다. 본 논문에서는 열전소자의 V-I 특성곡선과 내부저항을 분석하고, 기존의 MPPT제어방식을 비교하였다. P&O제어방식은 열전소자의 전압, 전류를 측정하기 위한 센서 2개를 사용해야하기 때문에 경제적으로 비효율적이다. 따라서 본 논문에서는 출력전압 조절을 위한 센서1개만을 이용하여 MPP를 추적하는 새로운 MPPT제어방식을 제안한다. 제안하는 MPPT제어방식은 duty ratio와 부하의 출력전압의 관계를 이용하였으며, DC-DC Converter의 출력전압을 주기적으로 샘플링하여 duty ratio를 증가 또는 감소시켜 최적의 duty ratio를 찾아 MPP를 유지하도록 제어된다. DC-DC Converter는 Two-Switch 토폴로지인 Cascaded boost-Buck Converter를 이용하여 회로도를 설계하였다. 제안된 MPPT 제어방식은 PSIM 시뮬레이션을 이용한 모의실험을 통하여 검증하였고, 그 결과 열전소자의 V-I 특성곡선으로부터 얻어지는 MPP에서 전압×전류 및 전력값(V=4.2V, I=2.5A, P=10.5W)과 일치함을 확인하였다.

A Novel Quadrant Search Based Mitigation Technique for DC Voltage Fluctuations in Multilevel Inverters

  • Roseline, Johnson Anitha;Vijayenthiran, Subramanian;V., Rajini;Mahadevan, Senthil Kumaran
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.670-684
    • /
    • 2015
  • The hybrid cascaded multilevel inverter (HCMLI) is a popular converter topology that is being increasingly used in high power medium voltage drives. The intricacy of the control technique for a HCMLI increases with the number of levels and due to fluctuating dc voltages. This paper presents a novel offline quadrant search based space vector modulation technique to synthesize a sinusoidal output from a dispersed pattern of voltage vectors due to different voltages in the auxiliary unit. Such an investigation has never been reported in the literature and it is being attempted for the first time. The method suggested distributes the voltage vectors for a reduced total harmonic distortion at minimal computation. In addition, the proposed algorithm determines the maximum modulation index in the linear modulation range in order to synthesize a sinusoidal output for both normal and abnormal vector patterns. It is better suited for a wide range of practical applications. It is particularly well suited for renewable source fed inverters which utilize large capacitor banks to maintain the dc link, which are prone to such slow fluctuations. The proposed quadrant search space vector modulation technique is simulated using MATLAB/SIMULINK and implemented using a Nexys-2 Spartan-3E FPGA for a developed prototype.

High-Quality Coarse-to-Fine Fruit Detector for Harvesting Robot in Open Environment

  • Zhang, Li;Ren, YanZhao;Tao, Sha;Jia, Jingdun;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.421-441
    • /
    • 2021
  • Fruit detection in orchards is one of the most crucial tasks for designing the visual system of an automated harvesting robot. It is the first and foremost tool employed for tasks such as sorting, grading, harvesting, disease control, and yield estimation, etc. Efficient visual systems are crucial for designing an automated robot. However, conventional fruit detection methods always a trade-off with accuracy, real-time response, and extensibility. Therefore, an improved method is proposed based on coarse-to-fine multitask cascaded convolutional networks (MTCNN) with three aspects to enable the practical application. First, the architecture of Fruit-MTCNN was improved to increase its power to discriminate between objects and their backgrounds. Then, with a few manual labels and operations, synthetic images and labels were generated to increase the diversity and the number of image samples. Further, through the online hard example mining (OHEM) strategy during training, the detector retrained hard examples. Finally, the improved detector was tested for its performance that proved superior in predicted accuracy and retaining good performances on portability with the low time cost. Based on performance, it was concluded that the detector could be applied practically in the actual orchard environment.

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

반도체 변압기용 멀티레벨 H-bridge 컨버터에 적용한 간단한 전압 밸런싱 방법 (A Simplified Voltage Balancing Method Applied to Multi-level H-bridge Converter for Solid State Transformer)

  • 정동근;김호성;백주원;조진태;김희제
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.95-101
    • /
    • 2017
  • A simple and practical voltage balance method for a solid-state transformer (SST) is proposed to reduce the voltage difference of cascaded H-bridge converters. The tolerance device components in SST cause the imbalance problem of DC-link voltage in the H-bridge converter. The Max/Min algorithms of voltage balance controller are merged in the controller of an AC/DC rectifier to reduce the voltage difference. The DC-link voltage through each H-bridge converter can be balanced with the proposed control methods. The design and performance of the proposed SST are verified by experimental results using a 30 kW prototype.

저급 센서를 고려한 GPS/INS 결합기법 연구 (A Study on GPS/INS Integration Considering Low-Grade Sensors)

  • 박제두;김민우;이제영;김희성;이형근
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.140-145
    • /
    • 2013
  • This paper proposes an efficient integration method for GPS (Global Positioning System) and INS (Inertial Navigation System). To obtain accuracy and computational conveniency at the same time with low cost global positioning system receivers and micro mechanical inertial sensors, a new mechanization method and a new filter architecture are proposed. The proposed mechanization method simplifies velocity and attitude computation by eliminating the need to compute complex transport rate related to the locally-level frame which continuously changes due to unpredictable vehicle motions. The proposed filter architecture adopts two heterogeneous filters, i.e. position-domain Hatch filter and velocity-aided Kalman filter. Due to distict characteristics of the two filters and the distribution of computation into the two hetegrogeneous filters, it eliminates the cascaded filter problem of the conventional loosly-coupled integration method and mitigates the computational burden of the conventional tightly-coupled integration method. An experiment result with field-collected measurements verifies the feasibility of the proposed method.