• Title/Summary/Keyword: cascaded

Search Result 623, Processing Time 0.028 seconds

A Stripline 10-Way Power Divider for the Feed Network of an S-band Linear Array Antenna (S-대역 선형 배열 안테나의 급전 회로를 위한 스트립라인 10-출력 전력분배기)

  • Park, Il-Ho;Kim, Rak-Young;Park, Jung-Yong;Jeong, Myung-Deuk;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.280-288
    • /
    • 2009
  • In this paper, a high-power and low-loss stripline 10-way power divider is designed and fabricated fur the feed network of an S-band linear array antenna with Chebyshev current distribution which has a narrow beam width and low side lobe level(SLL) of 35 dB or more. The unit cell of the power divider is based on a T-junction power divider and the whole divider is comprised of the cascaded unit cells. The multi-stage impedance transformer and modified ring hybrid are used in designing the power divider for performance improvement. And the reflection loss and insertion loss are improved by modifying a connector structure for a coaxial-to-stripline transition.

A Study on High Power Factor Electronic Ballast for Metal Halide Discharge Lamp Using a Double Resonant Inverter (복공진 인버터를 적용한 고역률 메탈핼라이드 램프용 전자식 안정기에 관한 연구)

  • Park Jae-Wook;Seo Cheol-Sik;Nam Seung-Sik;Kim Hae-Jun;Won Jae-Sun;Kim Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.313-322
    • /
    • 2005
  • In this paper, High power factor electronic ballast using a double resonant Inverter for 250[W] MHD lamp is designed and implemented. Proposed electronic ballast is composed of configuration that is cascaded boost active PFC circuit as power factor corrector and half-bridge double resonant inverter Into two stage approach. Theoretical analysis of circuit and characteristics estimation is generally illustrated by using normalized parameter. To remove the phenomenon of acoustic resonance in the lamp, Simple frequency controller composed timer IC and driving IC is designed and employed on the ballast. The experimental results show that an high power factor electronic ballast using a double resonant inverter is operated stably.

Single Phase 5-level Inverter with DC-link Switches (DC링크 스위치를 갖는 단상 5레벨 인버터)

  • Choi, Young-Tae;Sun, Ho-Dong;Park, Min-Young;Kim, Heung-Geun;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.283-292
    • /
    • 2011
  • This paper proposed a new multi-level inverter topology based on a H-bridge with two switches and two diodes connected to the DC-link. The output voltage of the proposed topology is quite closer to a sinusoidal waveform compared with a typical single phase inverter. The proposed multi-level inverter is applicable to a power conditioning system for renewable energy sources, and it can be also used as a building block of a cascaded multi-level inverter for a high voltage application. In case of conventional H-bridge type or NPC type multi-level inverter, 8 controllable switches are used to obtain a 5 level output voltage, but the proposed multi-level inverter requires only 6 controllable switches. Thus the circuit configuration is quite simple, reliable and cost-effective implementation is possible. The efficiency can be improved owing to the reduction of the switching loss. A new PWM method based on POD modulation is suggested which requires only one carrier signal. The switching sequence to make the capacitor voltage balanced is also considered. The feasibility is studied through simulation and experiment.

A Resonant-type Step-up DC/DC Converters with Piezoelectric Transducer (압전 트랜스듀서를 이용한 승압형 공진형 직류-직류 컨버터)

  • Park, Joung-Hu;Seo, Gab-Su;Cho, Bo-Hyung;Yi, Kyung-Pyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.343-354
    • /
    • 2009
  • In this paper, a magnetic-less dc-dc switching converter realizing an integrable power conversion system is described. Instead of magnetic devices, the inductive impedance range of piezoelectric transducers is utilized to store and resonate the energy for soft-switching. Piezoelectric devices have no windings and deliver the power by the electrodes, which lead to mass product through semiconductor-manufacturing process. This paper presents a resonant-type step-up dc-dc power converter employing a disk-type piezoelectric transducer, analyzing the operation principles and the frequency control characteristics. Also, a topology extension of the single stage converter into cascaded multi-stage is presented and analyzed with the operation principles and control characteristics. For verification of the analysis, a 10W output dc-dc power converter hardware was implemented. The hardware experiments shows a good frequency control and power efficiency greater than 96% in the single stage. A hardware prototype of the extended multi-stage one was also realized and tested. The results shows that the converter has the same frequency control performance and high efficiency such as 93%.

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

A Coordinative Control Strategy for Power Electronic Transformer Based Battery Energy Storage Systems

  • Sun, Yuwei;Liu, Jiaomin;Li, Yonggang;Fu, Chao;Wang, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1625-1636
    • /
    • 2017
  • A power electronic transformer (PET) based on the cascaded H-bridge (CHB) and the isolated bidirectional DC/DC converter (IBDC) is capable of accommodating a large scale battery energy storage system (BESS) in the medium-voltage grid, and is referred to as a power electronic transformer based battery energy storage system (PET-BESS). This paper investigates the PET-BESS and proposes a coordinative control strategy for it. In the proposed method, the CHB controls the power flow and the battery state-of-charge (SOC) balancing, while the IBDC maintains the dc-link voltages with feedforward implementation of the power reference and the switch status of the CHB. State-feedback and linear quadratic Riccati (LQR) methods have been adopted in the CHB to control the grid current, active power and reactive power. A hybrid PWM modulating method is utilized to achieve SOC balancing, where battery SOC sorting is involved. The feedforward path of the power reference and the CHB switch status substantially reduces the dc-link voltage fluctuations under dynamic power variations. The effectiveness of the proposed control has been verified both by simulation and experimental results. The performance of the PET-BESS under bidirectional power flow has been improved, and the battery SOC values have been adjusted to converge.

Image Segmentation by Cascaded Superpixel Merging with Privileged Information (단계적 슈퍼픽셀 병합을 통한 이미지 분할 방법에서 특권정보의 활용 방안)

  • Park, Yongjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1049-1059
    • /
    • 2019
  • We propose a learning-based image segmentation algorithm. Starting from super-pixels, our method learns the probability of merging two regions based on the ground truth made by humans. The learned information is used in determining whether the two regions should be merged or not in a segmentation stage. Unlike exiting learning-based algorithms, we use both local and object information. The local information represents features computed from super-pixels and the object information represent high level information available only in the learning process. The object information is considered as privileged information, and we can use a framework that utilize the privileged information such as SVM+. In experiments on the Berkeley Segmentation Dataset and Benchmark (BSDS 500) and PASCAL Visual Object Classes Challenge (VOC 2012) data set, out model exhibited the best performance with a relatively small training data set and also showed competitive results with a sufficiently large training data set.

Research and Optimization of Face Detection Algorithm Based on MTCNN Model in Complex Environment (복잡한 환경에서 MTCNN 모델 기반 얼굴 검출 알고리즘 개선 연구)

  • Fu, Yumei;Kim, Minyoung;Jang, Jong-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.50-56
    • /
    • 2020
  • With the rapid development of deep neural network theory and application research, the effect of face detection has been improved. However, due to the complexity of deep neural network calculation and the high complexity of the detection environment, how to detect face quickly and accurately becomes the main problem. This paper is based on the relatively simple model of the MTCNN model, using FDDB (Face Detection Dataset and Benchmark Homepage), LFW (Field Label Face) and FaceScrub public datasets as training samples. At the same time of sorting out and introducing MTCNN(Multi-Task Cascaded Convolutional Neural Network) model, it explores how to improve training speed and Increase performance at the same time. In this paper, the dynamic image pyramid technology is used to replace the traditional image pyramid technology to segment samples, and OHEM (the online hard example mine) function in MTCNN model is deleted in training, so as to improve the training speed.

Multi-Level Inverter Circuit Analysis and Weight Reduction Analysis to Stratospheric Drones (성층권 드론에 적용할 멀티레벨 인버터 회로 분석 및 경량화 분석)

  • Kwang-Bok Hwang;Hee-Mun Park;Hyang-Sig Jun;Jung-Hwan Lee;Jin-Hyun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.953-965
    • /
    • 2023
  • The stratospheric drones are developed to perform missions such as weather observation, communication relay, surveillance, and reconnaissance at 18km to 20km, where climate change is minimal and there is no worry about a collision with aircraft. It uses solar panels for daytime flights and energy stored in batteries for night flights, providing many advantages over existing satellites. The electrical and power systems essential for stratospheric drone flight must ensure reliability, efficiency, and lightness by selecting the optimal circuit topology. Therefore, it is necessary to analyze the circuit topology of various types of multi-level inverters with high redundancy that can ensure the reliability and efficiency of the motor driving power required for stable long-term flight of stratospheric drones. By quantifying the switch element voltage drop and the number and weight of inverter components for each topology, we evaluate efficiency and lightness and propose the most suitable circuit topology for stratospheric drones.