• Title/Summary/Keyword: cartilage tissue engineering

Search Result 73, Processing Time 0.023 seconds

Use of Neonatal Chondrocytes for Cartilage Tissue Engineering

  • KANG SUN WOONG;PARK JUNG HO;KIM BYUNG SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.259-264
    • /
    • 2005
  • Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/ safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosarninoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering

  • Coburn, Jeannine;Gibson, Matt;Bandalini, Pierre Alain;Laird, Christopher;Mao, Hai-Quan;Moroni, Lorenzo;Seliktar, Dror;Elisseeff, Jennifer
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.213-222
    • /
    • 2011
  • The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles.

Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins

  • Mira Hammad;Alexis Veyssiere;Sylvain Leclercq;Vincent Patron;Catherine Bauge;Karim Boumediene
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.304-314
    • /
    • 2023
  • Background and Objectives: Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results: In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions: We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.

Chondrogenesis of Mesenchymal Stem Cell Derived form Canine Adipose Tissue

  • Lee, Byung-Joo;Wang, Soo-Geun;Seo, Cheol-Ju;Lee, Jin-Chun;Jung, Jin-Sup;Lee, Ryang-Hwa
    • Proceedings of the KSLP Conference
    • /
    • 2003.11a
    • /
    • pp.183-183
    • /
    • 2003
  • Background and Objectives : Cartilage reconstruction is one of medical issue in otolaryngology. Tissue engineering is presently being utilized in part of cartilage repair. Sources of cells for tissue engineering are chondrocyte from mature cartilage and bone marrow mesenchymal stem cells that are able to differentiate into chondrocyte. Recent studies have shown that adipose tissue have mesenchymal stem cells which can differentiate into adipogenic, chondrogenic myogenic osteogenic cells and neural cell in vitro. In this study, we have examined chondrogenic potential of the canine adipose tissue-derived mesenchymal stem cell(ATSC). Materials and Methods : We harvested canine adipose tissue from inguinal area. ATSCs were enzymatically released from canine adipose tissue. Under appropriate culture conditions, ATSCs were induced to differentiate into the chondrocyte lineages using micromass culture technique. We used immunostain to type II collagen and toluidine blue stain to confirm chondrogenic differentiation of ATSCs. Results : We could isolate ATSCs from canine adipose tissue. ATSCs expressed CD29 and CD44 which are specific surface markers of mesenchymal stem cell. ATSCs differentiated into micromass that has positive response to immunostain of type II collagen and toluidine blue stain. Conclusion : In vitro, ATSCs differentiated into cells that have characteristic cartilage matrix molecules in the presence of lineage-specific induction factors. Adipose tissue may represent an alternative source to bone marrow-derived MSCs.

  • PDF

Cordycepin inhibits chondrocyte hypertrophy of mesenchymal stem cells through PI3K/Bapx1 and Notch signaling pathway

  • Cao, Zhen;Dou, Ce;Li, Jianmei;Tang, Xiangyu;Xiang, Junyu;Zhao, Chunrong;Zhu, Lingyu;Bai, Yun;Xiang, Qiang;Dong, Shiwu
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.548-553
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering to repair articular cartilage defects. However, hypertrophy of chondrocytes derived from MSCs might hinder the stabilization of hyaline cartilage. Thus, it is very important to find a suitable way to maintain the chondrogenic phenotype of chondrocytes. It has been reported that cordycepin has anti-inflammatory and anti-tumor functions. However, the role of cordycepin in chondrocyte hypertrophy remains unclear. Therefore, the objective of this study was to determine the effect of cordycepin on chondrogenesis and chondrocyte hypertrophy in MSCs and ATDC5 cells. Cordycepin upregulated chondrogenic markers including Sox9 and collagen type II while down-regulated hypertrophic markers including Runx2 and collagen type X. Further exploration showed that cordycepin promoted chondrogenesis through inhibiting Nrf2 while activating BMP signaling. Besides, cordycepin suppressed chondrocyte hypertrophy through PI3K/Bapx1 pathway and Notch signaling. Our results indicated cordycepin had the potential to maintain chondrocyte phenotype and reconstruct engineered cartilage.

Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon;Stevens, Molly
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.676-686
    • /
    • 2013
  • Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-${\beta}$1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.

Engineering Autogenous Cartilage Using PLA Coated PGA Chondrocyte Complex (자가연골세포와 PLA-coated PGA 복합체를 이용한 연골조직 재생)

  • Kim, Woo Seob
    • Archives of Plastic Surgery
    • /
    • v.32 no.1
    • /
    • pp.1-4
    • /
    • 2005
  • Previous sucessful results of neocartilage formation using tissue engineering technique in immunocompromised nude mouse xenograft model were reported. For clinical application, autogenous cell is preferrable to allogenic or xenogenic cell for circumvention of immune rejection. This study evaluates the feasibility of producing a engineered cartilage using autogenous chondrocytes. Chondrocytes were isolated from the auricular catilage of New Zealand White rabbit and seeded onto PGA polymer coated with polylactic acid in round pattern(diameter 0.7 cm, thickness 0.1 cm) at a concentration $7{\times}10^7$ chondrocytes per $cm^3$. Each Autogenous Cell-polymer constructs were implanted subcutaneously into the left side of dorsum of twelve Rabbits. Polymer templates not containg cells were implanted into the right side as a control. Fifteen rabbits were sacrificed at the following intervals: 5 rabbits at nine weeks, 7 rabbits at twelve weeksNew autogenous cartilage formation which retained the approximate dimensions of origianl round polymer template in 11 of 12 cell seeded implants. Histological examination using hematoxyline and eosin stain revealed vast majority of implants developed into mature cartilage. This study opens up the possibility of autologus cell transplant to construct autogenous cartilge.

Biodegradable Polymers for Tissue Engineering : Review Article (조직 공학용 생분해성 고분자 : 총설)

  • Park, Byoung Kyeu
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.251-263
    • /
    • 2015
  • Scaffolds play a crucial role in the tissue engineering. Biodegradable polymers with great processing flexibility and biocompatability are predominant scaffolding materials. New developments in biodegradable polymers and their nanocomposites for the tissue engineering are discussed. Recent development in the scaffold designs that mimic nano and micro features of the extracellular matrix (ECM) of bones, cartilages, and vascular vessels are presented as well.