• Title/Summary/Keyword: carrier-based DGNSS

Search Result 6, Processing Time 0.023 seconds

An Analysis of the Signal Properties of Japanese MSAS (일본의 MSAS 특성 분석)

  • Choi, Chang-Mook;Ko, Kwang-Soob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.946-947
    • /
    • 2016
  • This paper is for analyzing not only DGNSS navigation signal but also the navigation parameter of MSAS. The sufficient navigation satellites to determine 3-D position based on DGNSS are simultaneously available at MSAS monitering station and the test region of Korean peninsula. It was verified that the carrier to noise signal is stable to maintain the reliable positioning.

  • PDF

Position Error Analysis of Carrier-based DGNSS Systems Under Ephemeris Fault Conditions

  • Min, Dongchan;Kim, Yunjung;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.263-269
    • /
    • 2021
  • The carrier-based differential global navigation satellite system (CD-GNSS) has been garnering significant attention as a promising technology for unmanned vehicles for its high accuracy. The CD-GNSS systems to be used for safety-critical applications should provide a certain level of integrity. The integrity of these systems must be analyzed under various conditions, including fault-free and satellite fault conditions. The systems should be able to detect the faults that can cause large biases on the user position errors and quantify the integrity risk by computing the protection level (PL) to protect the user against the faults that are left undetected. Prior work has derived and investigated the PL for the fault-free condition. In this study, the integrity of the CD-GNSS system under the fault condition is analyzed. The position errors caused by the satellite's fault are compared with the fault-free PL (PL_H0) to verify whether the integrity requirement can be met without computing the PLs for the fault conditions. The simulations are conducted by assuming the ephemeris fault, and the position errors are evaluated by changing the size of the ephemeris faults that missed detection. It was confirmed that the existing fault monitors do not guarantee that the position error under the fault condition does not exceed the PL_H0. Further, the impact of the faults on the position errors is discussed.

An Analysis of the Navigation Parameters of Japanese DGNSS-MSAS (일본의 DGNSS인 MSAS 항법파라미터 분석)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1619-1625
    • /
    • 2017
  • Civil global navigation satellite system (GNSS) does not meet user performance requirements for specific PNT (Positioning, Navigation, and Time) applications. Therefore, various differential systems are used to augment GNSS for improving positioning accuracy and integrity. The MTSAT satellite augmentation system (MSAS) is the Japanese satellite based augmentation system. This paper is for analyzing the characteristics of Japanese MSAS in Korean peninsula. First of all, it was done for analyzing not only DGNSS navigation signal but also the navigation parameter through simulation and experimental tests. As a result of data analyses, the sufficient navigation satellites to determine 3-D position based on DGNSS are simultaneously available at MSAS monitering station and the southern region of Korean peninsula. It was verified that the carrier to noise signals are stable to maintain the reliable 3-D position and that the level of 2m (2drms) accuracy is very similar to the ordinary worldwide DGNSS as well.

Design of Kinematic Position-Domain DGNSS Filters (차분 위성 항법을 위한 위치영역 필터의 설계)

  • Lee, Hyung Keun;Jee, Gyu-In;Rizos, Chris
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.26-37
    • /
    • 2004
  • Consistent and realistic error covariance information is important for position estimation, error analysis, fault detection, and integer ambiguity resolution for differential GNSS. In designing a position domain carrier-smoothed-code filter where incremental carrier phases are used for time-propagation, formulation of consistent error covariance information is not easy due to being bounded and temporal correlation of propagation noises. To provide consistent and correct error covariance information, this paper proposes two recursive filter algorithms based on carrier-smoothed-code techniques: (a) the stepwise optimal position projection filter and (b) the stepwise unbiased position projection filter. A Monte-Carlo simulation result shows that the proposed filter algorithms actually generate consistent error covariance information and the neglection of carrier phase noise induces optimistic error covariance information. It is also shown that the stepwise unbiased position projection filter is attractive since its performance is good and its computational burden is moderate.

  • PDF

Potential Accuracy of GNSS PPP- and PPK-derived Heights for Ellipsoidally Referenced Hydrographic Surveys: Experimental Assessment and Results

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Yunsoo;Ham, Geonwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.211-221
    • /
    • 2017
  • Ellipsodially referenced survey (ERS) is considered as one of the challenging issues in the hydrographic surveys due to the fact that the bathymetric data collected by this technique can be readily transformed either to the geodetic or the chart datum by application of some geoscientific models. Global Navigation Satellite Systems (GNSS) is a preferred technique to determine the ellipsoidal height of a vessel reference point (RP) because it provides cost-effective and unprecedentedly accurate positioning solutions. Especially, the GNSS-derived heights include heave and dynamic draft of a vessel, so as for the reduced bathymetric solutions to be potentially free from these corrections. Although over the last few decades, differential GNSS (DGNSS) has been widely adopted in the bathymetric surveys, it only provides limited accuracy of the vertical component. This technical barrier can be effectively overcome by adopting the so-called GNSS carrier phase (CPH) based techniques, enhancing accuracy of the height solution up to few centimeters. From the positioning algorithm standpoint, the CPH-based techniques are categorized under absolute and relative positioning in post-processing mode; the former is precise point positioning (PPP) correcting errors by the global or regional models, the latter is post-processed kinematic positioning (PPK) that uses the differencing technique to common error sources between two receivers. This study has focused on assessment of achievable accuracy of the ellipsoidal heights obtained from these CPH-based techniques with a view to their applications to hydrographic surveys where project area is, especially, few tens to hundreds kilometers away from the shore. Some field trials have been designed and performed so as to collect GNSS observables on static and kinematic mode. In this paper, details of these tests and processed results are presented and discussed.

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.