• Title/Summary/Keyword: carrier transport mechanism

Search Result 64, Processing Time 0.023 seconds

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

Auxin Induced Expression of Expansin is Alered in a New Aux1 Allele that Shows Severe Defect in Gravitropic Response

  • Jeong, Hae-Jun;Kwon, Ye-Rim;Oh, Jee-Eun;Kim, Ki-Deok;Lee, Sung-Joon;Hong, Suk-Whan;Lee, Ho-Joung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.148-153
    • /
    • 2006
  • While the underlying molecular mechanism remains to be elucidated, recent studies suggest that polar auxin transport is a key controlling factor in triggering differential growth responses to gravity. Identification of regulatory components in auxin-mediated differential cell expansion would improve our understanding of the gravitropic response. In this study, we identify a mutant designated aux1-like(later changed to aux1), an allele of the aux1 mutant that exhibits a severely disrupted root gravitropic response, but no defects in developmental processes. In Arabidopsis, AUX1 encodes an auxin influx carrier. Since in-depth characterization of the gravitropic response caused by mutations in this gene has been performed previously, we focused on identifying the downstream genes that were differentially expressed compared to wild-type plants. Consistent with the mutant phenotype, the transcription of the auxin-responsive genes IAA17 and GH3 were altered in aux1 plants treated with IAA, 2, 4-D and NAA. In addition, we identified two expansin genes EXP10 and EXPL3 that exhibited different expression in wild-type and mutant plants.

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

Electrical Transport Properties of La2/3TiO2.84 Ceramic (La2/3TiO2.84 세라믹스의 전기전도특성)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.858-863
    • /
    • 2004
  • The thermoelectric power, dc conductivity and magnetic properties of the cubic L $a_{2}$ 3/Ti $O_{2.84}$ were investigated. The thermoelectric power was negative below 350 K. The measured thermoelectric power of L $a_{2}$ 3/Ti $O_{2.84}$ increased linearly with temperature, in agreement with model proposed by Emin and Wood, and was represented by A+BT. Temperature dependence indicates that the charge carrier in this material is a small polaron. L $a_{2}$ 3/Ti $O_{2.84}$ exhibited a cross over from variable range hopping to small polaron hopping conduction at a characteristic temperature well below room temperature. The low temperature do conduction mechanism in L $a_{2}$ 3/Ti $O_{2.84}$ was analyzed using Mott's approach. Mott parameter analysis gave values for the density of state at Fermi level [N( $E_{F}$)] = 3.18${\times}$10$^{20}$ c $m^{-3}$ e $V^{-1}$ . The disorder energy ( $W_{d}$) was found to be 0.93 eV, However, it was noted that the value of the disorder energy was much higher than the high temperature activation energy. The exist linear relation between log($\sigma$T)와 1/T in the range of 200 to 300 K, the activation energy for small polaron hopping was 0.15 eV.