• Title/Summary/Keyword: carrier gas

Search Result 628, Processing Time 0.026 seconds

Electrical Properties of Two-dimensional Electron Gas at the Interface of LaAlO3/SrTiO3 by a Solution-based Process (용액 공정을 통해 제조된 LaAlO3/SrTiO3 계면에서의 이차원 전자 가스의 전기적 특성)

  • Kyunghee Ryu;Sanghyeok Ryou;Hyeonji Cho;Hyunsoo Ahn;Jong Hoon Jung;Hyungwoo Lee;Jung-Woo Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2024
  • The discovery of a two-dimensional electron gas (2DEG) at the interface of LaAlO3 (LAO) and SrTiO3 (STO) substrates has sparked significant interest, providing a foundation for cutting-edge research in electronic devices based on complex oxide heterostructures. However, conventional methods for producing LAO thin films, typically employing techniques like pulsed laser deposition (PLD) within physical vapor deposition (PVD), are associated with high costs and challenges in precisely controlling the La and Al composition within LAO. In this study, we adopted a cost-effective alternative approach-solution-based processing-to fabricate LAO thin films and investigated their electrical properties. By adjusting the concentration of the precursor solution, we varied the thickness of LAO films from 2 to 65 nm and determined the sheet resistance and carrier density for each thickness. After vacuum annealing, the sheet resistance of the conductive channel ranged from 0.015 to 0.020 Ω·s-1, indicating that electron conduction occurs not only at the LAO/STO interface but also into the STO bulk region, consistent with previous studies. These findings demonstrate the successful formation and control of 2DEG through solution-based processing, offering the potential to reduce process costs and broaden the scope of applications in electronic device manufacturing.

Tele-metering

  • Hearte, L.O.
    • 전기의세계
    • /
    • v.2
    • /
    • pp.6-14
    • /
    • 1949
  • Telemetering may be described as the art of metering at a considerable distance those quantities which are ordinarily encountered in industry, and in the generation of electric power. It is in the production of electric power that telemetering is particularly important, for it permits the system operator, or load dispatcher, to have before him at all times a continuous graphic record of the power output of each individual generating station together with an automatically made continuous graphic record of the total system output. There desired individual graphic records may be obtained showing power flow in or out, on important tie lines, etc. Such arrangements have the very great advantage that loads may be assigned to each generating station so that the best over-all system economy may be obtained and the system operator at all times may see with his own eyes that loads scheduled are actually held at the various stations. Moreover, with such equipment, in the event of system or station trouble the load dispatcher can see exactly what station, or stations, are affected and to what extent, without having to get in touch with anyone by telephone. Decisions can, therefore, be quickly reached for rescheduling the load. One of the most accurate and reliable telemetering systems is based on the use of potentiometric circuits, the fundamentals of which are discussed below. A member of such telemetering systems have been installed for the Boston Edicon Co., Boston, Massachusetts, the Consolidated Edison Co. of New York City. The Public Service Gas & Electric Co. of Newark, new Jersey. The Philadelphia Electric Co. for Philadelphia, Pennsylvania, and the Pennsylvania Railroad Co. for their electrified zone between New York and Washington a distance of over 200 miles. The scale of the totalizing recorder for the New York area is 3,000,00 KW. That of the totalizing recorder for the Philadelphia area is 2,000,000 KW. The initial installation using this type of equipment described was placed in service for the Philadelphia Electric Co. in 1923. All of the original recording instruments are still in service, later instruments have been added to take care of additions to the power system and naturally these later recorders have incorporated in those refinements in design made since the earlier ones were manufactured. Many other installations of similar equipment have been made in the United States in various locations such as at St. Louis, on the West Coast, at Baltimore and in Washington, D.C. While the use of these basic potentiometric circuits involves the use of continuous metallic circuits of good insulation resistance and free of grounds, nevertheless, intermediate transmission links, involving and impulse method suitable for use on telephone Morse carrier channels is available. This same method may be employed on power line carrier systems and is also suitable for use on beam type microwave transmission. Many impulse type units are also used as a link in these potantiometric methods. For the sake of brevity a description is given only of these basic potentiometric circuits. If there is sufficient interest in Korea, a further paper can be given covering those impulse circuits also.

  • PDF

수직방향으로 적층된 InAs 양자점의 광학적 특성

  • 김광무;노정현;박영민;박용주;나종범;김은규;방정호
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.93-93
    • /
    • 1999
  • 양자점(Quantum dot : QD)를 이용한 소자를 만들기 위해서는 수직방향으로의 적층이 필수적이다. 양자점의 적층은 수직적으로 같은 위치에 정렬하므로, 고려되어야 할 요소로는 양자점간의 파동함수의 중첩(coupling)에 의한 특성변화, 적층의 진행에 따른 변형(strain)의 증가로 기인되는 volcano 모양으로 나타나는 결함등이 있다. 이러한 결함은 nonradiative recombination center로 작용하여 오히려 효율이 떨어지게 되는 현상이 발생하게 되므로 본 연구에서는 적층횟수에 따른 발광효율의 변화를 조사하여 소자응용에 적절한 적층 조건을 조사하였다. 시료성장은 molecular beam epitaxy (MBE) 장치를 이용하여 GAs(100) 기판위에 GaAs buffer를 58$0^{\circ}C$에서 150nm 성장후 InAs/GaAs 양자점과 50$0^{\circ}C$에서 적층회수 1, 3, 6, 10, 15, 20회로 하였으며 적층성장 이후 GaAs cap layer를 성장하였다. GaAs spacing과 cap layer의 성장온도 역시 50$0^{\circ}C$이며 시료의 분석은 photoluminescence (PL)과 scanning transmission electron microscope (STEM)으로 하였다. 적층횟수를 바꾸어 시료를 성장하기 전에 적층횟수를 10회로 고정하고 spacing 두께를 2.8nm, 5.6nm, 11.2nm로 바꾸어 성장하여 PL 특성을 관찰하여본 결과 spacing이 2.8nm인 경우 수직적으로 정렬된 양자점 간에 coupling이 매우 커서 single layer QD의 PL peak에 비해 약 100nm 정도 파장이 증가하였고, spacing의 두께가 11.2nm 일 경우는 single layer QD와 거의 같은 파장의 빛을 방출하여 중첩이 거의 일어나지 않지만 두꺼운 spacing때문에 PL세기가 감소하였다. 한편, 적층회수에 따른 광학적 특성을 PL로 조사하여 본 결과 peak 파장은 적층횟수가 1회에서 3회로 증가했을 때는 blue shift 하다가 이후 적층이 증가함에 따라 red shift 하였다. 그리고 10층 이상의 적층에서는 excited state에서 기인된 peak이 검출되었다. 이렇나 원인은 적층수가 증가함에 따라 carrier life time이 증가하여 exciter state에 carrier가 존재할 확률이 증가하기 때문으로 생각된다. 또한 PL 세기가 다소 증가하다가 10층 이상의 경우는 다시 감소함을 알 수 있었다. 반치폭도 3층과 6층에서 가장 적은 값을 보였다. 이와 같은 결과는 결함생성과 관련하여 STEM 분석으로 해석되어질 수 있는데 6층 적층시는 양자점이 수직적으로 정렬되어 잘 형성됨을 관찰할 수 있었고 적층에 따른 크기 변화도 거의 나타나지 않았다. 그러나 10층 15층 적층시 몇가지 결함이 형성됨을 볼수 있었고 양자점의 정렬도 완전하게 이루어지지 않음을 볼 수 있었다. 그러므로 수직적층된 InAs 양자점의 광학적 특성은 성장조건에 따른 결함생성과 밀접한 관련이 있으며 상세한 논의가 이루어질 것이다.

  • PDF

Design and Fabrication of the Cryogenically Cooled LNA Module for Radio Telescope Receiver Front-End (전파 망원경 수신기 전단부용 극저온 22 GHz 대역 저잡음 증폭기 모듈 설계 및 제작)

  • Oh Hyun-Seok;Lee Kyung-Im;Yang Seong-Sik;Yeom Kyung-Whan;Je Do-Heung;Han Seog-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.239-248
    • /
    • 2006
  • In this paper, the cryogenically cooled low noise amplifier module for radio telescope receiver front-end using pHE-MT MMIC is designed and fabricated. In the selection of MMIC, the MMIC fabricated with the pHEMTS providing successful cryogenic operation are chosen. They are mounted in the housing using the thin film substrate. In the design of the housing, the absorber and the elimination of the gap between the carrier and the housing as well removed the unnecessary oscillations by its structure. The mismatch is improved by ribbon-tuning to provide the best performance at room temperature. The fabricated module shows the gain of $35dB{\pm}1dB$ and the noise figure of $2.37{\sim}2.57dB$ at room temperature over $21.5{\sim}23.5GHz$. In the cryogenic temperature of $15^{\circ}K$ cooled by He gas, the measured gain was above 35 dB and flatness ${\pm}2dB$ and the noise temperatures of $28{\sim}37^{\circ}K$.

Surface Modification of Polystyrene (PS) by Atmospheric Pressure Plasma (상압 플라즈마를 이용한 Polystyrene (PS)의 표면개절)

  • Lee, Jong-Su;Shin, Hyun-Seok;Seok, Jin-Woo;Jang, Gyu-Wan;Beag, Yeong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Hydrophilic Surface modification of Polysarene (PS) was performed by Atmospheric Pressure Plasma (APP). Air or 0, gases were used for carrier gases and RF power was changed from 150 to 350 W. We controlled the treatment time as 1 time to 4 time passing through the plasma region. when the carrier gas was air, the water contact angle on the PS surface was decreased from $91^{\circ}$ to $20^{\circ}$. And the surface energy increased from 45.74 dyne/cm to 68.48 dyne/cm. In case of the $O_2$ plasma treatment, at 300 W of RF power and 4 times treatment, the water contact angle on the PS. Surface was decreased from $91^{\circ}$ to $17^{\circ}$ and the surface energy was increased from 45.74 dyne/cm to 69.73 dyne/cm. The surface energy was increased by polar force not by dispersion force. Improvement of surface properties can be explained by the formation of new hydrophilic groups which is identified as C-O, C=O by XPS analysis. The contact angle of APP treated PS surface kept in air was increased with time elapse, but maintained same value when it was kept in water. We treated the PS surface by APP and deposited Cu as $4,000\;{\AA}$ and $8,000\;{\AA}$ by thermal evaporation. The adhesion between sample and Cu thin film improvement of treated PS surface against untreated sample. could be verifiable by Tape test (ASTM D3359)

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.

Effects of Chemical Composition and Particle Size of Starting Aluminum Source on the Spheroidization in the Flame Fusion Process (화염용융법에 의한 구상 알루미나 제조에 미치는 초기 알루미나 원료의 화학조성과 입도의 영향)

  • Eom, Sun-Hui;Pee, Jae-Hwan;Lee, Jong-Keun;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.431-437
    • /
    • 2009
  • Various inorganic fillers improve the thermal conductivity and physical properties of organic products. Alumina has been used a representative filler in the heat radiation sheet for the heat radiation of electric device. The high filling rate of alumina increases the thermal conductivity and properties of products. We successfully developed the spherical alumina by flame fusion process using the oxygen burner with LPG fuel. In the high temperature flame (2500$\sim$3000$^{\circ}C$) of oxygen burner, sprayed powders were melting and then rotated by carrier gas. This surface melting and rotation process made spherical alumina. Especially effects of chemical composition and particle size of stating materials on the melting behavior of starting materials in the flame and spheroidization ratio were investigated. As a result, spheroidization ratio of boehmite and aluminum hydroxide with endothermic reaction of dehydration process was lower than that of the sintered alumina without dehydration reaction.

Study on Antimicrobial Activity and Analysis of Essential Oil Components of Cinnamomum cassia and Prunellae Herba (육계 및 하고초의 향기성분 분석과 항균 활성 연구)

  • Lee, Jong-Rok;Park, Sook-Jahr;Jung, Dae-Hwa;Park, Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • The essential oil obtained by steam distillation from medicinal plants of Cinnamomum cassia and Prunellae Herba. Analysis of essential oils were performed on GC/MS selective detector. Separations were performed fused silica capillary column. The carrier gas was ultra pure helium with a flow of 1 $m{\ell}/min$ and the splitless injector temperature was set as $280^{\circ}C$. The column temperature program was as follows: initial temperature of $70^{\circ}C$ for 4 min, and increased by $2^{\circ}C/min$ 70 to $100^{\circ}C$ (held 2 min), After that the temperature was varied from 100 to $200^{\circ}C$ at $5^{\circ}C/min$ (held 20 min), increase to $280^{\circ}C$ (held 5 min) at $10^{\circ}C/min$, in a total run time of 73 min. Ten volatile flavor components were identified from C. cassia and ten volatile flavor components were identified from Prunellae Herba. Strong inhibition of growth of Vibrio parahaemolyticus was obtained with all doses of C. cassia tested. Moreover, antimicrobial activity of C. cassia occurred in a dose dependant manner.

Effect of Chemical Vapor Deposition Condition on the Growth of SiC Thin Films (화학기상증착조건이 SiC 박막의 성장에 미치는 영향)

  • Bang, Wook;Kim, Hyeong-Joon
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.98-110
    • /
    • 1992
  • B-SiC thin films were fabricated on Si(100) substrate under 1 atom by fVD. The effects of deposition conditions on the growth and the properties especially crystallinity and prefer ential alignment of these thin films were investigated. SiH4 and CH4 were used as source gases and H2 as Carrier gas. Th9 growth Of B-SiC thin films with changing parameters such as the growth temperature, the ratio of source gases (SiH4/CH4 ) and the total amount of source gases. The grown thin films were characterized by using SEM, a -step, XRD, Raman Spectro- scopy and TEM. Chemical conversion process improved the quality of thin films due to the formation of SiC buffer layer. The crystallinity of SiC thin films was improved when the growth temperature was higher than l150t and the amount of CH4 exceeded that of SiH4. The better crystallinity, the better alignment to the crystalline direction of substates. TEM analyses of the good quality thin films showed that the grain size was bigger at the surface than at the interface and the defect density is not depend on the ratio of the source gases.

  • PDF

Characterization of N-doped SiC(3C) epilayer by CVD on Si(111) (화학기상증착으로 Si(111) 위에 성장된 N-SiC(3C) 에피층의 특성)

  • 박국상;김광철;남기석;나훈균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.39-42
    • /
    • 1999
  • Nitrogen-doped SiC(3C) (N-SiC(3C)) epliayers were grown on Si(111) substrate at $1250^{\circ}C$ using chemical vapor deposition (CVD) technique by pyrolyzing tetramethylsilane(TMS) in $H_{2}$ carrier gas. SiC(3C) layer was doped using $NH_{3}$ during the CVD growth to be n-type conduction. Physical properties of N-SiC(3C) were investigated by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) patterns, Raman spectroscopy, cross-sectional transmission electron microscopy (XTEM), Hall measurement, and current-voltage(I-V) characteristcs of the N-SiC(3C)/Si(p) diode. N-SiC(3C) layers exhibited n-type conductivity. The n-type doping of SiC(3C) could be controlled by nitrogen dopant using $NH_{3}$ at low temperature.

  • PDF