• Title/Summary/Keyword: carrier gas

Search Result 631, Processing Time 0.027 seconds

Assessment of Coal Combustion Safety of DTF using Response Surface Method (반응표면법을 이용한 DTF의 석탄 연소 안전성 평가)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

Optimization of Passivation Process in Upgraded Metallurgical Grade (UMG)-Silicon Solar Cells (UMG 실리콘 태양전지의 패시베이션 공정 연구)

  • Chang, Hyo-Sik;Kim, Yoo-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Choi, Kyoon;Ahn, Jon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.438-438
    • /
    • 2009
  • We have investigated the effect of forming gas annealing for Upgraded Metallurgical Grade (UMG)-silicon solar cell in order to obtain low-cost high-efficiency cell using post deposition anneal at a relatively low temperature. We have observed that high concentration hydrogenation effectively passivated the defects and improved the minority carrier lifetime, series resistance and conversion efficiency. It can be attributed to significantly improved hydrogen-passivation in high concentration hydrogen process. This improvement can be explained by the enhanced passivation of silicon solar cell with antireflection layer due to hydrogen re-incorporation. The results of this experiment represent a promising guideline for improving the high-efficiency solar cells by introducing an easy and low cost process of post hydrogenation in optimized condition.

  • PDF

Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

A Study on the Optical Property of Al-N-codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.319-320
    • /
    • 2009
  • In this study, high-quality Al-N doped p-type ZnO thin films were deposited on n-type Si (100) wafer or Si coated with buffer layer by DC magnetron sputtering in the mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin film showed higher carrier concentration $2.93\times10^{17}cm^{-3}$, lower resistivity of $5.349\;{\Omega}cm$ and mobility of $3.99\;cm^2V^{-1}S^{-1}$, respectively. According to PL spectrum, the Al donor energy level depth ($E_d$) of Al-N codoped p-type ZnO film was reduced to about 51 meV, and the N acceptor energy level depth ($E_a$) was reduced to 63 meV, respectively.

  • PDF

Chemical Vapor Nucleation of Tungsten from $WF_6-SiH_4$ on Silicon Dioxide Surface (산화규소 표면위에서 $WF_6-SiH_4$ 화학증착에 의한 텅스텐 핵의 생성)

  • Choi, Kyeong-Keun;Yi, Chung;Rhee, Shi-Woo;Lee, Kun-Hong
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.19-26
    • /
    • 1992
  • The rate of tungsten nuclei formation from $WF_6-SiH_4$ on silicon dioxide surface was measured. The nucleation rate became faster at high deposition temperature, low carrier gas flow rate and high deposition pressure. Also the rate became faster at the downstream of the oxide surface compared to the oxide surface near the inlet. Shape and cross-sectional view of the tungsten nuclei were observed with SEM and their chemical compositions were also determined.

  • PDF

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target (SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성)

  • Kim, Cheol;Kim, Sungdong;Kim, Sarah Eunkyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2016
  • Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

UV Blocking Effect of $TiO_2/SiO_2$ Composite Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분사 열분해 장치에서 제조된 $TiO_2/SiO_2$ 복합 분체의 UV 차단 효과)

  • Lee, Dong-Kyu;Lee, Jin-Hwa;Kim, Dong-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.281-288
    • /
    • 2005
  • The silica nanoparticles were used as support of catalyst, filling material, electronic assembler, thin film material, and sensor material. And, the titania nanoparticles were used as pigment, dielectric substance, sensor and photocatalyst. In this paper, the spherical composite particles of $TiO_2/SiO_2$with narrow size distribution and phase pure were synthesized by ultrasonic spray pyrolysis method from $TiOSO_4$ and colloidal silica solution. Using ultrasonic apparatus, this starting solution was vaporized to droplets, and these droplets were induced into tube furnace by carrier gas. The resulting composite powder was characterized by scanning electron microscopy, X-ray diffraction analysis, TG-DTA, in vitro sun protection factor(SPF) and BET surface area analysis.

Hydrogen Storage Properties of Microporous Carbon Nitride Spheres (구형의 질화탄소 마이크로세공체의 수소저장 특성)

  • Kim, Se-Yun;Suh, Won-Hyuk;Choi, Jung-Hoon;Yi, Yoo-Soo;Lee, Sung-Keun;Stucky, Galen D.;Kang, Jeung-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.744-744
    • /
    • 2009
  • The development of safe and suitable hydrogen storage materials is one of key issues for commercializing hydrogen as an energy carrier. Carbon based materials have been investigated for many years to store hydrogen by the adsorption of the gas on the surface of the carbon structure. Recently, it is reported that carbon nitride nanobells have high hydrogen storage capacity since the nitrogen atom plays an important role on attracting hydrogen molecules. Here we report carbon nitride microporous spheres (CNMS) which have the maximum surface area of 995.3 $m^2/g$. Melamine-Formaldehyde resin is the source of carbon and nitrogen in CNMS. Most of the CNMS pores have diameters in the range of 6 to 8 A which could give a penetration energy barrier to a certain molecule. In addition, the maximum hydrogen storage capacities of carbon nitride spheres are 1.9 wt% under 77 K and 1 atm.

  • PDF

The Behavior of Chlorobenzenes and Chlorophenols in Fly Ash by Thermal Treatment (소각잔사 중에 함유된 클로로벤젠과 클로로페놀의 열분해 거동)

  • Sim, Yeong-Suk;Lee, U-Geun;Kim, Jin-Beom
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.293-302
    • /
    • 1998
  • This study was performed to investigate the behavior of chlorobenzenes (CIBZS) and chlorophenols (CIPhs) in a thermally treated MSWI fly ash. The experiment was carried out in a fixed bed reactor at the temperature range of 300~$600^{\circ}C$. Reaction time range was between 30 and 120 minutes, and NB and 02 gases were used as carrier gas. The decomposition rate of CIBZS was more affected by reaction time than by the reaction temperature. The decomposition rate of CIPhs was affected by both parameters. Decomposition rate of CIBZS and CIPhs reached 80.4% and 96.6% at $600^{\circ}C$, 120 min, respectively. Considering the effect of O2 content, decomposition rate of CIBZS and CIPhs was the highest at 10% of O2 content. Declorination and decomposition reactions Pere investigated by analyzing homologue distribution. Higher chlorinated CIBZS and CIPhs homologue decreased but lower chlorinated compounds increased with the increase of temperature. Effect of O2 on the homologue distribution of these compounds was not clear in the range of our experiment conditions.

  • PDF