• Title/Summary/Keyword: cardiac function

Search Result 538, Processing Time 0.034 seconds

Evaluation of Cardiac Function by Transthoracic Echocardiography in Patients with Myocardial Injury Secondary to Organophosphate Poisoning (유기인계 중독에 의한 심근손상 환자에서의 경흉부 심장 초음파검사를 사용한 심장기능평가)

  • Lee, Yoonsuk;Kim, Oh Hyun;Kim, Hyung Il;Cha, Kyoung Chul;Kim, Hyun;Lee, Kang Hyun;Hwang, Sung Oh;Cha, Yong Sung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.13 no.2
    • /
    • pp.62-70
    • /
    • 2015
  • Purpose: Cardiac complications may occur in cases of organophosphate (OP) poisoning. However, a few studies regarding patterns of cardiac toxicity as determined by transthoracic echocardiography (TTE) after exposure to OP have been reported. In the current study, the authors examined cardiac functions using TTE in patients with myocardial injury caused by exposure to OP. Methods: A retrospective review was conducted on 16 consecutive cases of OP poisoning with myocardial injury (defined as elevated troponin I within 48 hours of arrival at the regional emergency center in South Korea and diagnosed and treated at the center from January 2012 to November 2014. Results: TTE was performed in 11 (69%) of the 16 patients with an elevated troponin I (TnI) level within 48 hours. Of these 11 patients, 5 patients (45.5%) exhibited reduced ejection fraction (EF), and 3 exhibited regional wall motion abnormality (RWMA). Two patients (18.2%) had both reduced systolic function and RWMA. Two of the 5 patients with reduced EF returned to normal systolic function, however two patients did not regain normal systolic function after admission. One patient expired due to multiple organ failure, and 4 patients were transferred with a moribund status. Twelve of 15 patients who survived to discharge (at 4 to 35 months) were followed. Five of these patients died during follow-up and 7 survived without further complications. Conclusion: OP can cause reversible cardiac dysfunction including reduced systolic function and RWMA. Serum TnI may be useful for initial assessment of cardiac function during the workup of patients suffering from OP poisoning. After the initial assessment of cardiac enzyme, further evaluation with TTE in patients with abnormal cardiac enzyme will be necessary to understand the cardiac toxicity.

  • PDF

Evaluation of Cardiac Function Analysis System Using Magnetic Resonance Images

  • Tae, Ki-Sik;Suh, Tae-Suk;Choe, Bo-Young;Lee, Hyoung-Koo;Shinn, Kyung-Sub;Jung, Seung-Eun;Lee, Jae-Moon
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 1999
  • Cardiac disease is one of the leading causes of death in Korea. In quantitative analysis of cardiac function and morphological information by three-dimensional reconstruction of magnetic resonance images, left ventricle provides an important role functionally and physiologically. However, existing procedures mostly rely on the extensive human interaction and are seldom evaluated on clinical applications. In this study, we developed a system which could perform automatic extraction of enpicardial and endocardial contour and analysis of cardiac function to evaluate reliability and stability of each system comparing with the result of ARGUS system offered 1.5T Siemens MRI system and manual method performed by clinicians. For various aspects, we investigated reliability of each system by compared with left ventricular contour, end-diastolic volume (EDV), end-systolic volume (ESV), stock volume (SV), ejection fraction (EF), cardiac output (CO) and wall thickness (WT). When comparing with manual method, extracted results of developed process using minimum error threshold (MET) method that automatically extracts contour from cardiac MR images and ARGUS system were demonstrated as successful rate 90% of the contour extraction. When calculating cardiac function parameters using MET and comparing with using correlation coefficients analysis method, the process extracts endocardial and epicardial contour using MET, values from automatic and ARGUS method agreed with manual values within :t 3% average error. It was successfully demonstrated that automatic method using threshold technique could provide high potential for assessing of each parameters with relatively high reliability compared with manual method. In this study, the method developed in this study could reduce processing time compared with ARGUS and manual method due to a simple threshold technique. This method is useful for diagnosis of cardiac disease, simulating physiological function and amount of blood flow of left ventricle. In addition, this method could be valuable in developing automatic systems in order to apply to other deformable image models.

  • PDF

A Study on the Left Ventricular Function Evaluation with ECG Gated Cardiac Blood Pool Scan (ECG Gated Cardiac Blood Poot Scan에서 좌심실기능(左心室機能) 분석(分析)에 관(關)한 연구(硏究))

  • Chung, June-Key;Lee, Jung-Kyoon;Kim, Kwang-Won;Lee, Myung-Chul;Cho, Bo-Yeon;Lee, Young-Woo;Koh, Chang-Soon;Han, Man-Chung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 1980
  • Most of clinical morbidity in cardiology are associated with abnormalities of the left ventricle. Several methods have been developed to measure the left ventricular function, including cardiac catheterization with cineangiography, echocardiography, and systolic time interval. But these methods have many limitations. ECG gated cardiac blood pool scan provides a safe, noninvasive, repeatable method for determining the left ventricular function. Utilizing the cardiac blood pool scan, we measured the left ventricular function in 165 cardiac patients, and in 26 normal subject. 1. Left ventricular ejection fractions were measured by cardiac blood pool scan, and compared in 20 patients with that measured by x-ray cineangiography. Correlation coefficient was 0.885. 2. Ejection fractions were classified by funtional class made in New York Heart Association. Ejection fractions well represented the functional status. 3. Ejection fractions decreased in cardiomyopathy ($20.1{\pm}4.8%$) and ischemic heart disease ($34.4{\pm}16.7%$). Impaired ejection fractions in myocardial infarction were associated with the extent of infarction. 4. Regional left ventricular wall motion was evaluated from the end-diastolic and end-systolic images. In cardiomyopathy diffuse hypokinesia was noted and in myocardial infarction akinesia was noted on the infarcted areas.

  • PDF

Effects of vasopressin administration in the oral cavity on cardiac function and hemodynamics in rats

  • Fukami, Hayato;Sunada, Katsuhisa
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • Background: The vasoconstrictive effect of epinephrine in local anesthetics affects the heart, which leads to hesitation among dentists in injecting local anesthetics into patients with cardiovascular disease. Due to its vasoconstrictive effects, the present study investigated the effects of vasopressin administration on cardiac function in rats. Methods: Experiment 1 aimed to determine the vasopressin concentration that could affect cardiac function. An arterial catheter was inserted into the male Wistar rats. Next, 0.03, 0.3, and 3.0 U/mL arginine vasopressin (AVP) (0.03V, 0.3V, and 3.0V) was injected into the tongue, and the blood pressure was measured. The control group received normal saline only. In Experiment 2, following anesthesia infiltration, a pressure-volume catheter was placed in the left ventricle. Baseline values of end-systolic elastance, end-diastolic volume, end-systolic pressure, stroke work, stroke volume, and end-systolic elastance were recorded. Next, normal saline and 3.0V AVP were injected into the tongue to measure their effect on hemodynamic and cardiac function. Results: After 3.0V administration, systolic blood pressures at 10 and 15 min were higher than those of the control group; they increased at 10 min compared with those at baseline. The diastolic blood pressures at 5-15 min were higher than those of the control group; they increased at 5 and 10 min compared with those at baseline. The preload decreased at 5 and 10 min compared to that at baseline. However, the afterload increased from 5 to 15 min compared with that of the control group; it increased at 10 min compared with that at baseline. Stroke volume decreased at 10 and 15 min compared with that of the control group; it decreased from 5 to 15 min compared with that at baseline. Stroke work decreased from 5 to 15 min compared with that of the control group; it decreased from 5 to 15 min compared with that at baseline. Conclusion: Our results showed that 3.0 U/mL concentration of vasopressin resulted in increased blood pressure, decreased stroke volume and stoke work, decreased preload and increased afterload, without any effect on myocardial contractility.

Cardiac MRI (심장 자기공명영상)

  • Lee, Jong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The obstacles for cardiac imaging are motion artifacts due to cardiac motion, respiration, and blood flow, and low signal due to small tissue volume of heart. To overcome these obstacles, fast imaging technique with ECG gating is utilized. Cardiac exam using MRI comprises of morphology, ventricular function, myocardial perfusion, metabolism, and coronary artery morphology. During cardiac morphology evaluation, double and triple inversion recovery techniques are used to depict myocardial fluidity and soft tissue structure such as fat tissue, respectively. By checking the first-pass enhancement of myocardium using contrast-enhanced fast gradient echo technique, myocardial blood flow can be evaluated. In addition, delayed imaging in 10 - 15 minutes can inform myocardial destruction such as chronic myocardial infarction. Ventricular function including regional and global wall motion can be checked by fast gradient echo cine imaging in quantitative way. MRI is acknowledged to be practical for integrated cardiac evaluation technique except coronary angiography. Especially delay imaging is the greatest merit of MRI in myocardial viability evaluation.

  • PDF

Cardiac systolic time intervals and heather index measured by impedance cardiography during postural changes (체위변화시 심장의 수축기 시간간격 및 Heather Index의 변화)

  • 고성경;김창규;김덕원
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.67-79
    • /
    • 1992
  • Cardiac systolic time intervals (STLs) and Heather index (HI) were used to access changes in left ventricular function of six male subjects exposed to postural changes,$0^{\circ}C$, ${\pm}2^{\circ}C$, ${\pm}45^{\circ}C$, ${\pm}90^{\circ}C$, Significant prolongation of the pre-ejection period (PEP) and PEP/ LVET ratio, shortening of the left ventricular ejection time (LVET), STI, HI and $1/PEP^{2}$were observed during exposure to both $+45^{\circ}C $ and $+90^{\circ}C $But the values measured during $-45^{\circ}C $ and$-90^{\circ}C $ were reversed. Changes in fluid shift, filling volume, preload, after load and sympathetic activities may account for the observed findings. Early response of cardiac foctions was recorded using impedance cardiography. This method is very simple but accurate. Thus it will be useful in this aerospace and work physiology. In conclusion, STIs appear to provide reliable noninvasive method for examining changes of cardiac function during exposure to postural changes.

  • PDF

Cardiac Dysfunction Is Not Associated with Increased Reintubation Rate in Patients Treated with Post-extubation High-Flow Nasal Cannula

  • Sim, Jae Kyeom;Choi, Juwhan;Oh, Jee Youn;Min, Kyung Hoon;Hur, Gyu Young;Lee, Sung Yong;Shim, Jae Jeong;Lee, Young Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.4
    • /
    • pp.332-340
    • /
    • 2022
  • Background: Cardiac dysfunction patients have long been considered at high risk of reintubation. However, it is based on past studies in which only conventional oxygen therapy was applied after extubation. We investigated association between cardiac dysfunction and reintubation rate in situation where high-flow nasal cannula (HFNC) was widely used during post-extubation period. Methods: We conducted a retrospective observational cohort study of patients treated with HFNC after planned extubation in medical intensive care unit of single tertiary center. Patients were divided into normal function group (ejection fraction [EF] ≥45%) and cardiac dysfunction group (EF <45%). The primary outcome was reintubation rate within 72 hours following extubation. Results: Of 270 patients, 35 (13%) had cardiac dysfunction. Baseline characteristics were similar in both groups. There were no differences in the changes in vital signs between the two groups during the first 12 hours after extubation except diastolic blood pressure. The reintubation rates were 20% and 17% for cardiac dysfunction group and normal function group, respectively (p=0.637). In a multivariate Cox regression analysis, cardiac dysfunction was not associated with an increased risk of reintubation within 72 hours following extubation (hazard ratio, 1.56; p=0.292). Conclusion: Cardiac dysfunction was not associated with increased reintubation rate within 72 hours when HFNC is immediately applied after planned extubation.

Cardioprotective Potential of Gracilaria Verrucosa Extract in Myocardial Infarction-Induced Heart Failure Model (심근 경색 유발 심부전 모델에서 강리 추출물의 심장 보호 가능성)

  • Youn Jae Jang;Hye Yoom Kim;Jung Joo Yoon;Byung Hyuk Han;Je Kuk Yu;Nam Geun Cho;Ho Sub Lee;Dae Gill Kang
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.157-169
    • /
    • 2023
  • Gracilaria Verrucosa (GV), a seaweed used in traditional Korean medicine, was studied for its effects on MI-induced heart failure in rats. MI is caused by a blocked coronary artery, leading to severe cardiac dysfunction. The study used a rat model to assess cardiac changes over time and evaluate the impact of GV on heart failure. Ischemia was induced through LAD ligation surgery, and the extent of ischemic area was measured as a prognostic factor. GV extract administration significantly improved cardiac morphology and reduced cardiac weight compared to the MI group. GV treatment also improved cardiac function, as evidenced by positive effects on chamber dilation during MI-induced heart failure. Parameters such as ejection fraction (EF) and fractional shortening (FS) were measured. The MI group showed decreased EF and FS compared to the sham group, while these parameters improved in the GV group. GV treatment also reduced levels of LDH, CPK, and CK-MB in the serum, indicating reduced myocardial damage. Histological analysis revealed that GV treatment attenuated cardiac hypertrophy and fibrosis, with reduced collagen deposition in the myocardium. Immunohistochemistry analysis showed suppressed expression of TGF-β1 and collagen 1, involved in fibrosis. In conclusion, GV showed potential in improving cardiac function in a rat model of MI-induced heart failure. It alleviated myocardial damage, attenuated cardiac hypertrophy and fibrosis, and suppressed fibrotic markers. Further studies are needed to explore its clinical efficacy and underlying mechanisms in cardiac diseases beyond animal models.

Computational analysis of heart mechanics using a cell-autonomic nerve control-hemodynamic system coupled model (세포-신경계-혈류역학 시스템 통합모델에 의한 심장역학 분석)

  • Jun, Hyung-Min;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2941-2946
    • /
    • 2007
  • A model of the cardiovascular system coupling cell, hemodynamics and autonomic nervecontrol function is proposed for analyzing heart mechanics. We developed a comprehensive cardiovascular model with multi-physics and multi-scale characteristics that simulates the physiological events from membrane excitation of a cardiac cell to contraction of the human heart and systemic blood circulation and ultimately to autonomic nerve control. Using this model, we delineatedthe cellular mechanism of heart contractility mediated by nerve control function. To verify the integrated method, we simulated a 10% hemorrhage, which involves cardiac cell mechanics, circulatory hemodynamics, and nerve control function. The computed and experimental results were compared. Using this methodology, the state of cardiac contractility, influenced by diverse properties such as the afterload and nerve control systems, is easily assessed in an integrated manner.

  • PDF

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.