• Title/Summary/Keyword: carboxamides

Search Result 34, Processing Time 0.027 seconds

Design, Synthesis and Antibacterial Activity Studies of Novel Quinoline Carboxamide Derivatives

  • Shivaraj, Yellappa;Naveen, Malenahalli H.;Vijayakumar, Giriyapura R.;Kumar, Doyijode B. Aruna
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.241-245
    • /
    • 2013
  • A series of novel quinoline-6-carboxamides and 2-chloroquinoline-4-carboxamides were synthesized by the reaction of their analogous carboxylic acids with various amine derivatives in the presence of base TEA and protecting agent BOP at room temperature. Synthesized compounds were confirmed by spectral characterization viz IR, $^1H$-NMR, and MS. Antibacterial activity carried out against Escherichia coli and Staphyllococcus aureus indicated that the synthesized compounds were active against these microorganisms.

Synthesis and In Vitro Cytotoxicity of 1-Azanthraquinone-3-Carboxamides

  • Lee, Hee-Soon;Lee, Chang-Wook;Yang, Sung-Il
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.380-383
    • /
    • 1999
  • Five 1-azzanthraquinone-3-carboxamides were synthesized and evaluated in vitro cytotoxicity against four human cancer cell lines. The most active compound, 7b, exhibited cytotoxic activity comparable to doxorubicin.

  • PDF

Synthesis and $5{\alpha}$-Reductase Inhibitory Activity of $3{\beta}$-Substituted 5-Androstene-17-Carboxamides ($3{\beta}$-치환 5-Androstene-17-Carboxamides 합성과 $5{\alpha}$-Reductase 저해 활성)

  • Jo, Ik-Sung;Ma, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.466-473
    • /
    • 2010
  • A series of $3{\beta}$-substituted 5-androstene-$17{\beta}$-carboxamides were synthesized from analogs of $3{\beta}$-hydroxy-5-androstene-$17{\beta}$-carboxylic acid (1) with tert-butylamine, N,N-diethylamine and 3-aminopyridine and some compounds were epoxidized with mCPBA. A rat prostate testosterone $5{\alpha}$-reductase inhibitory activity of synthesized compounds was assessed by radioimmunoassay using [1,2,6,7-3H]-testosterone as substrate. All synthesized compounds showed lower activity than finasteride and the N-(3-pyridino)-$3{\beta}$-carboxycarbonyloxy-5-androstene-$17{\beta}$-carboxamide (12) showed weak inhibitory activity ($IC_{50}$: $2.4{\times}10^{-7}M$).

Practical Hofmann Rearrangement

  • Jew, Sang-Sup;Park, Hyeung-Geun;Kang, Myoung-hee;Lee, Tae-hee;Cho, Youn-sang
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.333-335
    • /
    • 1992
  • Hofmann rearrangement of a series of primary aliphatic and aromatic carboxamides 1a-1m with HgO-NBS (or dibromantin)R'OH-DMF gives corresponding carbamates 2a-2m in excellent yields.

  • PDF

Structural Requirements for Modulating 4-Benzylpiperidine Carboxamides from Serotonin/Norepinephrine Reuptake Inhibitors to Triple Reuptake Inhibitors

  • Paudel, Suresh;Kim, Eunae;Zhu, Anlin;Acharya, Srijan;Min, Xiao;Cheon, Seung Hoon;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.392-398
    • /
    • 2021
  • In this study, we determined the effect of 24 different synthetic 4-benzylpiperidine carboxamides on the reuptake of serotonin, norepinephrine, and dopamine (DA), and characterized their structure-activity relationship. The compounds with a two-carbon linker inhibited DA reuptake with much higher potency than those with a three-carbon linker. Among the aromatic ring substituents, biphenyl and diphenyl groups played a critical role in determining the selectivity of the 4-benzylpiperidine carboxamides toward the serotonin transporter (SERT) and dopamine transporter (DAT), respectively. Compounds with a 2-naphthyl ring were found to exhibit a higher degree of inhibition on the norepinephrine transporter (NET) and SERT than those with a 1-naphthyl ring. A docking simulation using a triple reuptake inhibitor 8k and a serotonin/norepinephrine reuptake inhibitor 7j showed that the regions spanning transmembrane domain (TM)1, TM3, and TM6 form the ligand binding pocket. The compound 8k bound tightly to the binding pocket of all three monoamine reuptake transporters; however, 7j showed poor docking with DAT. Co-expression of DAT with the dopamine D2 receptor (D2R) significantly inhibited DA-induced endocytosis of D2R probably by reuptaking DA into the cells. Pretreatment of the cells with 8f, which is one of the compounds with good inhibitory activity on DAT, blocked DAT-induced inhibition of D2R endocytosis. In summary, this study identified critical structural features contributing to the selectivity of a molecule for each of the monoamine transporters, critical residues on the compounds that bound to the transporters, and the functional role of a DA reuptake inhibitor in regulating D2R function.

Synthesis of N-(disubstituted styryl) Carboxamides (N-(2치환스티릴) 카르복사미드류의 합성)

  • Kim, Soon-Ok;Hong, Sa-Mi;Lee, Seon-Hwa
    • YAKHAK HOEJI
    • /
    • v.36 no.5
    • /
    • pp.433-439
    • /
    • 1992
  • For the synthesis of tuberin derivatives, N-(disubstituted styryl) carboxamides, the series of cinnamic acids were transformed through chlorides, azides to isocyanates. And then isocyanates were reduced separately by Dibal and Grignard reagent. As a result of antimicrobial susceptibility test, N-(3,4-dichlorostyryl) formamide and N-(3,4-dichlorostyrl) acetamide showed comparatively large activity against some bacteria that is, MIC was respectively 50 ppm, $6.25{\sim}50\;ppm$. MIC of other derivatives was similiar to that of tuberin, about 100.

  • PDF

Transformation of Carboxylic Acids and Their Derivatives into Aldehydes by Lithium Tris(dialkylamino)aluminum Hydrides

  • Cha Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.670-676
    • /
    • 1992
  • A systematic study of the partial reduction of carboxylic acids and their derivatives to the corresponding aldehydes with lithium tris(dialkylamino)aluminum hydrides under practical conditions has been carried out. The diethylaminosubstituted derivative of lithium aluminum hydride, lithium tris(diethylamino)aluminum hydride (LTDEA), shows quite general applicability in the conversion of carboxylic acids, carboxylic esters, and primary carboxamides to the corresponding aldehydes. Lithium tripiperidinoaluminum hydride (LTPDA) also appears to be a reagent of choice for such partial transformation of primary carboxamides. In additioin, both LTDEA and LTPDA reduce tertiary carboxyamides to aldehydes in high yields. Finally, lithium tris(dihexylamino)aluminum hydride (LTDHA) is capable of achieving the chemoselective reduction of aromatic nitriles to aldehydes in the presence of aliphatic nitriles under practical conditions.