• Title/Summary/Keyword: carbonization time

Search Result 113, Processing Time 0.025 seconds

A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process (열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구)

  • HAN, DANBEE;YEOM, KYUIN;PARK, SUNGKYU;CHO, OOKSANG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.

The Influence of Moisture Contents on Decay and Carbonization in Flue-Cured Tobacco during Aging storage. (잎담배의 수분함량이 부패 및 탄화엽 발생에 미치는 영향)

  • 민영근;이경구;안동명;이완남
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The moisture contents of threshed leaf tobacco during aging storage were very important factor for the improvement or deterioration of leaf quality. Decay and carbonization of leaf tobacco were mainly controlled by moisture contents during storage. The influence of moisture contents on the decay and carbonization of threshed leaf tobacco (Flue-Cured, Var. NC 82. AB3O-1 grade) were examined during 1 year. The moisture contents of leaf tobacco were treated to 3 kg as 12% (controle), 16%, 20% and 24% after redrying, respectively, These tobacco were put into center of carton box containing about 200kg with 12%'s tobacco, and then packed and stored from June, 1988 under natural weather condition in warehouse at Ock-Cheon threshing plant. Samples were taken from dissected carton box at 0, 1, 2, 4, 7 and 12 months after moisture treatment and Racking time, and some chemical properties were investigated at every sampling time. In results of inducement to decay and carbonization of leaf tobaccos during 1 year's storage by moisture treatment. decayed leaf was appeared but carbonized leaf did not. Calorification and decayed leaf occurred at high moisture contents above 20%, and these phenomena were appeared between 30 and 150 days after moisture treatment and packing. High moisture content leaves (above 20%) caused nearby other leaves to be sunk with high moisture content. Nicotine and calcium contents were increased to 20%~30% and 10%~22%, respectively, but total sugar contents was decreased to 40%~60% by moisture treatment(20% ~24% ).

  • PDF

A Study on the Carbonization and Strengthening of PAN Fiber by Microwave Plasma (마이크로웨이브 플라즈마를 이용한 탄화공정 및 PAN fiber의 강도 향상에 관한 연구)

  • Choi, Ji-Sung;Joo, Jung-Hoon;Lee, Hun-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • A study to replace a high temperature thermal carbonization process with microwave plasma process is carried for PAN fiber as a starting material. Near atmospheric pressure microwave plasma (1 Torr~45 Torr) was used to control to get the fiber temperature up to $1,000^{\circ}C$. Even argon is an inert gas, its plasma state include high internal energy particles; ion (15.76 eV) and metastable (11.52 eV). They are very effective to lower the necessary thermal temperature for carbonization of PAN fiber and the resultant thermal budget. The carbonization process was confirmed by both EDS (energy dispersive spectroscopy) of plasma treated fibers and OES (optical emission spectroscopy) during processing step as a real time monitoring tool. The same trend of decreasing oxygen content was observed in both diagnostic methods.

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

The influence of heating rate on the carbonization of sulfuric acid-impregnated cellulose (황산첨가 셀룰로오스의 탄화에서 승온속도의 영향)

  • 김대영
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2003
  • The influence factors for char yield in the carbonization process of natural cellulose are the carbonization temperature, the heating rate and the atmosphere in the furnace. In general, it is well known that the improvement of char yield is expected under the conditions of the lower carbonization temperature, the slower heating rate and the presence of inert gas in the furnace. In this study, it has been investigated the effect of the heating rate control with sulfuric acid as a dehydrating agent for the improvement of char yield in the carbonization process of natural cellulose. The cellulose treated with sulfuric acid has shown the weak dependency of heating rate in char yield, whereas the untreated cellulose has shown the strong dependency. These findings clearly suggest that it can be useful to control heating rate with appropriate dehydrating agent in the carbonization process to improve the char yield and shortening the carbonization time.

  • PDF

Development of a Carbonization Activator (하수슬러지 활성탄화로 개발)

  • Jung, Dong Hyun;Lim, Mun Sup;Song, Joo Sub;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.109-115
    • /
    • 2009
  • The purposes of this study are to treat sewage sludge that has increasingly become an issue and to recycle it as the adsorbent. The adsorbent was produced by carbonization and simultaneous steam activation, and its characteristics were studied. Parametric screening studies were carried out for the preparation of good adsorbent. Optimum operating conditions were confirmed as input carbonization-activated temperature of $840^{\circ}C$, feed steam flow rate of 70 g/min, carbonization-activated time of 30 min and feed dried sludge of 10.8 kg/day, respectively. At this time, the iodine adsorptivity was maximized as 328.1 mg/g. Pore development, structure, element compound and content were confirmed by using nanoPOROSITY, SEM (Scanning electron microscope), and EDS (Energy dispersive spectroscopy). Through this result, it was known that the adsorbent derived from sewage sludge could be used for the treatment of leachate in a landfill, VOCs (Volatile organic compounds), and so on.

Study on Manufacturing Characteristics of Carbonated lightweight Aggregate using Sewage Sludge (하수슬러지를 이용한 탄화경량골재의 제조 특성 연구)

  • Yoo, Yeong-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.743-750
    • /
    • 2013
  • In this study, the carbonized aggregate of light weight and high mechanical strength using sewage sludge was evaluated with changing carbonation variables of temperature, detention time and feed condition. Porosity and mechanical strength was simultaneously increased according to increase of carbonization temperature unexpectedly. Carbonization detention time above 1 hour nearly affect on the porosity, but mainly on mechanical strength of the carbonized aggregate in case of clay addition. On $900^{\circ}C$, porosity and mechanical strength was increased rapidly, but above $1000^{\circ}C$, porosity began to decrease. Clay addition was very effective on increase of mechanical strength following much loss in porosity. The carbonized aggregate manufactured at $900^{\circ}C$ adding 30 % clay in sewage sludge was higher a little in porosity and 3 times in mechanical strength than those at $700^{\circ}C$ not adding clay. Consequently, in manufacturing the carbonized aggregate having simultaneously high porosity and mechanical strength, it is desirable to have operational condition of $900{\sim}1000^{\circ}C$ temperature and 1 hour time, and clay addition within 30 % for further higher mechanical strength.

Economic Analysis of Korean-type Mobile Carbonization Apparatus for the Field Utilization of Logging Residues (산지폐잔재의 현지 활용을 위한 한국형 조립식 탄화장치의 경제성분석)

  • Chang, Cheol-Su
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.11-19
    • /
    • 2007
  • This study was designed to analyze the economic efficiency that is needed to develop and make practical application of a mobile carbonization apparatus, which are able to make wood charcoals and pyroligneous liquid at the logging field with debris. B/C ratio was employed to make an economic analysis, and sensitivity analysis with respect to change in price and interest rates also was made. Cylindrical type is the proper type for the mobile carbonization apparatus, when important factors such as handling capacity, a carbonization time, quality of products and assembling ability were considered. It weighs 400 kg, and a three-step fold-up equipment. The size of 2 (diameter) by 2.4 m (height) carbonization equipment required 1,500 kg wood debris per batch. A forty-eight to fifty-two carbonization time produced 300 kg of wood charcoal and $45{\ell}$ of pyroligneous liquid. The average life span of the apparatus was 5 years. If the private enterprise operated 100 batch, 80 batch, and 70 batch with one apparatus, the B/C ratio of them was greater than 1, indicating that the production is economically feasible. The period to achieve a break-even point required to be 4 years in case of 100 and 80 batches to 5 years in case of 70 batch. But the private enterprises should operate at least two apparatus for the profits. Also, if the production was to be profitable, the prices of wood charcoals and pyroligneous liquid should be at least 750 won per kg and 700 won per liter.

  • PDF

Effect of Water-Hardness in the Biological Wastewater-treatment (생물학적 폐수처리시 수질 경도에 따른 처리효과 연구)

  • Park Young G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.58-64
    • /
    • 2004
  • Biological treatment of wastewater was studied with a purpose to remove TOC by the reduction of water hardness. The optimal conditions of coagulant were determined by reaction time and amount of coagulant. Experimental results indicate that the biological treatment after physico-chemical treatment was found to provide very efficient removal efficiency in the process to treat the textile wastewater, including the carbon dioxide treatment. The combined process of carbonization in the physico-chemical treatment respectively was increased the removal efficiencies of $30.0\%$ in biological treatment in comparison with exclusive biological treatment. As a result, the treatment of hardness after carbonization had the best removal efficiency of approximately $60.0\%$. The removal efficiencies in the exclusive biological treatment using Bacillus subtilis and after carbonization were increased by $38.9\%\;and\;69.0\%$ respectively. The combined Bacillus subtilis-assisted biological treatment was determined to be the most effective method to treat the textile wastewater in an economic point of view, the water quality in the wastewater treatment plays an important role.