• Title/Summary/Keyword: carbonation test

Search Result 227, Processing Time 0.03 seconds

Evaluation on the Durability of PVA Fiber Reinforced Mortar for Repair (PVA 섬유 보강 보수 모르타르의 내구성 평가)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Su-Tae;Yoon, Pil-Yong;Kim, Jin-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.621-624
    • /
    • 2006
  • In this study, the repair method using PVA fiber reinforced mortar evaluated on durability performance. Test of salt injury, carbonation, freezing-thawing, chemical attack, permeability was performed As for the test results, it was found that durability performance of the repair method using PVA fiber mortar showed more better than the existing repair method. Therefore, appling on the repair method using PVA fiber reinforced mortar, the repaired concrete structures can be increased to service life.

  • PDF

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.

An experimental study on the durability evaluation of concrete applied functional nano composite inorganic activated carbon based coatings (기능성 나노복합 무기질 활성탄계 표면 처리제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • Yang, Gi-Young;Jang, Seog-Jae;Baek, Jong-Myeong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1385-1390
    • /
    • 2006
  • Concrete structure can be deteriorated by ingress of moisture and aggressive agents. To maintain the sound performance of concrete structure during the service life, it needs to protect concrete from ingress of moisture and aggressive agents before arising deterioration of concrete. Protection of concrete is possible by surface treatment. In this study, durability of the functional nano composite inorganic activated carbon based coatings which can provide a barrier against the ingress of moisture or aggressive ions to concrete is discussed. For the durability evaluation of the coatings, fine void structure evaluation test, chloride penetration acceleration test, accelerated carbonation test, freezing and thawing test, and the accelerated test of chemical erosion are conducted. As the result of this study, the functional nano composite inorganic activated carbon based coatings which became one formed complex compound with adsorption and porosity on concrete surface, had an effect on the function of far infrared radiation, antimicrobial action, air cleaning, airing assurance, and the interception of moisture of deterioration factor, chloride ion, carbon dioxide, sulfate, and so on.

  • PDF

Characterization of Durability and Deterioration Eroded by Chemical Attack on the Concrete Lining in Conventional Tunnel (화학적 침식을 받은 재래식 터널 콘크리트 라이닝의 내구성능 및 열화특성)

  • Kim, Dong-Gyou;Lee, Seung-Tae;Jung, Ho-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.25-32
    • /
    • 2007
  • This study is to evaluate the effect of chemical attack on durability and deterioration of lining concrete in tunnel. Surface examination, nondestructive inspection, uniaxial compressive strength test, carbonation test, chloride diffusion test, micro-structural analysis were performed to analyze the deterioration of lining concrete in tunnel constructed 70 years ago. From surface examination results, the tunnel had been repaired and reinforced in several times. It has many cracks, water-leakage, efflorescence and exploitation. Compressive strengths obtained from nondestructive inspection and uniaxial compressive strength test have measured $17.5{\sim}34.7MPa$, and $12.8{\sim}40.3MPa$, respectively. Carbonation depth specimen cored from concrete lining has ranged from 3mm to 27mm. From chloride diffusion test, most specimens have low permeability. And the XRD analysis was able to detect ettringite and thaumasite, which were confirmed by SEM and EDS results to be the causes for the deterioration of lining concrete.

Evaluations of Corrosion Resistance of Coated Steel Using Polymer Cement Slurry (폴리머 시멘트 슬러리로 코팅한 도장철근의 내식성 평가)

  • Jo, Young-Kug;Kim, Young-Jib;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Reinforced concrete structures under sever conditions such as marine structures, bridges and structures constructed with aggregates(dredged from sea), can be deteriorated from corrosion of the reinforcing bars. The purpose of this study is to evaluate the anti-corrosive performance of coated steel using polymer cement slurry. Polymer cement slurry with various polymer dispersions and corrosion inhibiting agent were coated to the surface of bars, and tested for accelerated corrosion tests. Tests include immersion in NaCl 10% solution, chloride ion spray, autoclave cure, autoclave cure after carbonation, penetration of NaCl 10 % solution, carbonation after penetration of NaCl 10% solution. Test results, show that the anti-corrosive performace is considerably improved by using polymer cement slurry at surface of steel. And this trend is marked by adding of corrosion inhibiting agent. This difference of the anti-corrosive properties is hardly recognized according to types of polymer dispersions. The coated steel using polymer cement slurry will be improved to a great extent compared to those of plain steel when increasing content of chloride ion in cement concrete.

Properties of Epoxy-Modified Mortars with Alkali Activators and Ground Granulated Blast Furnace Slag (알칼리자극제 및 고로슬래그미분말을 병용한 에폭시수지 혼입 폴리머 시멘트 모르타르의 성질)

  • Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this study is to investigate the properties of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS) and alkali activators. The hardener-free EMMs with a GGBFS content of 20% using 4 types of alkali activators were prepared with various polymer-binder ratios, and tested for strengths, water absorption, carbonation depth, chloride ion and H2SO4 penetration depth. The conclusions obtained from the test results are summarized as follows: The compressive strength of the EMMs with a GGBFS content of 20% attains a maximum at a polymer-binder ratio of 10%. The flexural strength of the hardener-free EMMs using Ca(OH)2 as a alkali activator is improved with increasing polymer-binder ratios. However, the flexural strength of the EMMs using NaCO3, Na2SO4 and Li2CO3 is gradually decreased with increasing polymer-binder ratios. Regardless of the type of alkali activator, the water absorption, chloride ion penetration and carbonation depth are remarkably decreased with increasing polymer-binder ratios due to the epoxy film formed in the EMMs. The H2SO4 penetration depth of the hardener-free EMMs with a GGBFS content of 20% is gradually increased with increasing polymer-binder ratio. In this study, the properties of hardener-free EMMs using Ca(OH)2 as a alkali activator are more excellent than those of other alkali activators.

An Experimental Study on Permeable Water Proof Admixtures of Concrete (콘크리트 침투성 방수제의 실험적 연구)

  • 구민세;박언규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.138-144
    • /
    • 1996
  • At present, waterproof is absolutely needed to minimize the carbonation of bridge decks in Kor ea. In this research indoor experiments for penetrative waterproof admixture out of available methods are carried out to evaluate the resisting characteristics against natural arid artificial car bona ting conditions. The test results show that the optimal time of waterproof is 14 days after the concrete construc. tion but reconsideration is necessary for the application to high strength concrete because of the reduction in penetration of waterproof admixture. The results also show that the penetrat ive waterproof admixture has srrong resistance to the acid rain. However the waterproof capability of the admixture is not permanent especially under the natural exposure. Therefore the slab of a bridge should be paved with asphalt concrete. Other noticeable effects are the increase of heat and abrasion resistances from the use of the waterproof agents.

A Study on the One Side Freezing /Thaw and Carbonation of Autoclaved Lightweight Concrete (경량기포콘크리트의 편면동결융해 및 탄산화에 관한 연구)

  • 노재성;황의환;홍성수;이범재
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.149-156
    • /
    • 1995
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

Evaluation of Diffusion on Cement Mortar and Durability of Concrete Specimen Using Inorganic Coating Material and Surface Treatment System (무기질 도료 및 표면처리 시스템을 적용한 시멘트 모르타르와 콘크리트의 내구성 평가)

  • Kim, In-Seob;Lee, Jong-Kyu;Chu, Yong-Sik;Kim, Tae-Hyun;Shim, Kwang-Bo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. However, such high durable structure is often attacked by some environmental condition such as chloride diffusion, carbonation and so on. In order to prevent the deterioration behaviors of concrete structures. We estimated durability of concrete when used surface treatment system and coatings by new type inorganic coating materials. Base on the results of chloride ion's diffusion test, the coated cement mortar had smaller transmitted quantity.

Drying Shrinkage and Durability of Concrete Using Fine River Sand (하천세사를 사용한 콘크리트의 건조수축 및 내구성)

  • Bae, Suho;Jeon, Juntai;Kwon, Soonoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.493-502
    • /
    • 2013
  • The purpose of this research is to estimate the drying shrinkage and durability of concrete using the fine river sand to utilize it actively as an alternative aggregate for concrete. For this purpose, the fine river sand samples were collected at the mid and down stream of main stream of Nakdong-River, and then the concrete specimens using the fine river sand were made according to strength level. After obtaining relation equation between compressive strength and cement-water ratio from the mix experiment result, the concrete specimens using different fine river sand were made for the specified concrete strength of 35MPa, and then their drying shrinkage and durability such as the resistance to freeze and thaw and carbonation were evaluated. It was observed from the test result that the durability of concrete using fine river sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine river sand with small fineness was comparatively larger than that of concrete using reference sand.