• Title/Summary/Keyword: carbonation depth of concrete

Search Result 174, Processing Time 0.019 seconds

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.

Service Life Variation for RC Structure under Carbonation Considering Korean Design Standard and Design Cover Depth (국내설계기준과 피복두께를 고려한 RC 구조물의 탄산화 내구수명의 변동성)

  • Kim, Yun-Shik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.15-23
    • /
    • 2021
  • In this paper, service life for RC(Reinforced Concrete) substructure subjective to carbonation was evaluated through deterministic and probabilistic method considering field investigation data and Design Code(KDS 14 20 40). Furthermore changes in service life with increasing COV(Coefficient of Variation) and equivalent safety index meeting the same service life were studied. From the investigation, the mean and its COV of cover depth were evaluated to 70.0 ~ 90.0 mm and 0.2, respectively. With intended failure probability of 10.0 % and 70 mm of cover depth, service life decreased to 137 years, 123 years, and 91 years with increasing COV of 0.05, 0.1, and 0.2, respectively. In the case of 80 mm of cover depth, it changes to 179 years, 161 years, and 120 years with increasing COV. The equivalent safety index meeting the same service life from deterministic method showed 1.66 ~ 3.43 for 70 mm of cover depth and 1.61 ~ 3.24 for 80 mm of cover depth, respectively. The various design parameters covering local environment and quality condition in deterministic method yields a considerable difference of service life, so that determination of design parameters are required for exposure conditions and parameter variation.

An Experimental Study on Measurement of Corrosion Initiation in Reinforced Concrete Exposed to Chloride Using EIS Method (EIS를 이용한 염해에 노출된 철근콘크리트의 부식개시 측정에 관한 실험적 연구)

  • Park, Dong-Jin;Park, Jang-Hyun;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.61-62
    • /
    • 2017
  • In this study, the initiation of steel corrosion was monitored due to chloride attack using embedded sensor. In general, Steel bars embedded in concrete are protected from corrosion by being forming a passive film on the surface. However, the passive film is destroyed by chemical erosion such as concrete carbonation and chloride penetration, and the rebar is exposed to the deteriorating factor and corrosion proceeds. In order to realize the initiation of steel corrosion, OCP and change of Impedance parameter were observed by using Half-cell and EIS method depending on cover depth. As result, 10mm cover showed the impedence increased in 6weeks.

  • PDF

The Development of Life Evaluation Program for LNG Storage Tank considering Fatigue and Durability (피로 및 내구성을 고려한 LNG 저장탱크의 수명평가 프로그램 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • The LNG storage tank as core facility of LNG industry is mainly composed of the inner tank of nikel 9% steel and the outer tank of prestressed concrete. To respond proactively increased risk of structure performance deterioration due to fatigue of the inner tank and durability reduction of the outer tank, life evaluation program for LNG storage tank is needed. In this study, life evaluation program for LNG storage tank was developed to assess fatigue of the inner tank and durability(carbonation and chloride attack) of the outer tank. By defining the main three scenarios in the inner tank, the fatigue life analysis is conducted from structural analysis and Miner's damage rule. Carbonation progress of the outer tank is predicted according to thickness of cover concrete by using carbon dioxide contents and data of penetration depth. To consider a variety of input conditions and a reliability in results of chloride attack, the evaluation of choride attack for the outer tank is constructed through Life-365 program of open source.

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Bisphenol A and F Type Epoxy Resin with Calumite (비스페놀 A 및 F형 에폭시수지와 칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.517-524
    • /
    • 2014
  • Nitrite-Type hydrocalumite (calumite) is a material that can adsorb chloride ions ($Cl^-$) that cause corrosion of reinforce bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete. In this study, polymer-modified mortars using two types of epoxy resin with calumite are prepared with various polymer binder-ratios of 0, 5, 10, 15, 20% and calumite contents of 0, 5%. The specimens are tested for chloride ion penetration, carbonation, drying shrinkage and corrosion inhibition. As a result, the chloride ion penetration and carbonation depth of PMM using epoxy resin somewhat increases with increasing calumite contents, but those remarkably decreases depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to decrease with increasing polymer-binder ratio and calumite content. Unmodified mortars with calumite content of 5% did not satisfy quality requirement by KS. However, it was satisfied with KS requirement by the modification of epoxy resin in cement mortar. On the whole, the carbonation and chloride ion penetration depth of epoxy-modified mortars with calumite is considerably improved with an increase in the polymer-binder ratio regardless of the calumite content, and is remarkably improved over unmodified mortar. And, the replacement of the portland cement with the calumite has a marked effect in the corrosion-inhibiting property of the epoxy-modified mortars.

The Quality Properties of Self-Compacting Concrete Mixed with Tailing from the Sangdong Tungsten Mine (상동광산 광미를 혼합한 자기충전 콘크리트의 품질 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.777-783
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder(TA) of self-compacting concrete(SCC). The experimental tests for slump-flow, time required to reach 500 mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The results of this study, slump-flow of SCC was satisfied a prescribed range. And time required to reach 500 mm of slump flow(sec) and time required to flow through V-funnel(sec) decreased with increasing replacement of TA. But filling height of U-box test(mm), replacement of TA up to 30% were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standards(KS). The compressive strength of SCC decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete. The fundamental durability was reviewed through the dry shrinkage rate and accelerated carbonation tests. As the result dry shrinkage rate and accelerated carbonation depth increased with increasing replacement of TA.

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.

An Experimental Study on the Engineering Properties of Fiber Reinforced Concrete using Kenaf Fibers (양마섬유를 혼입한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Jun, Woo-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • This study is to examine experimentally on the engineering properties of fiber reinforced concrete using kenaf(KN) fiber and another organic fibers for comparing test, and propose the usable method of KN fiber as an natural fiber in the concrete industry. It is to select 4 contents(0, 0.3, 0.6 and $0.9kg/m^3$) of KN fiber and 4 organic fibers (Jute, Cellulose, Polypropylene and Nylon). For this study, it is to perform various tests including slump, air content, plastic and drying shrinkage, flexural and tensile strength, carbonation depth for the fiber reinforced concrete according to contents of KN fiber and 4 organic fibers. The results of this study are as follows : In case of KN fiber contents $0.6kg/m^3$, it shows the effective results from increasing concrete strength including flexural and tensile, from decreasing plastic and drying shrinkage, carbonation depth. Also KN fiber is confirmed having excellent performances by comparing with test results of another organic fibers as same contents $0.6kg/m^3$. Therefore, considering concrete test results, cost and environment, KN fiber is proposed as the optimum contents in the range of $0.6kg/m^3$ and an effective fiber materials, and needs to keep up these study on the site application.

An Experimental Study on Development of Physical Properties and Durability of Concrete Spread with Inorganic Antibiotics (무기질 항균제 도포에 의한 콘크리트의 경화성상 및 내구성상 향상에 관한 실험적 연구)

  • Kim, Moo-Han;Khil, Bae-Su;Kim, Jae-Hwan;Cho, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.75-82
    • /
    • 2005
  • Sewage facilities are positively necessary for environment improvement such as rainwater removal, sewage disposal, preservation of the quality of water and health of the citizens in present-day. Meanwhile, a deterioration of the concrete sewer pipe is increasing rapidly due to the chemical and physical attack and especially biochemical attack that is to say biodeterioration. So, in advanced countries, prediction techniques and corrosion inhibition system for sewer concrete are developed and are being applied. Also, antibiotics were developed already but application of that is low because it is not economical and has no practical use. But, in domestic, countermeasures for the corrosion of sewage concrete are not sufficient and biochemical attack is not reflected in those essentially. In this study, to prevent biochemical corrosion of the sewer concrete, surface of the concrete was spread with liquefied inorganic antibiotics and then its engineering properties were experimentally investigated. As a result, compressive strength of the specimen spread with antibiotics were similar to those of non spread, Both bond strength and abrasion amount of the specimen spread with antibiotics were inferior to non spread. Properties of absorption and air permeability of the specimen spread with antibiotics were superior to non spread. Finally, carbonation depth, chloride ion penetration depth and weight change ration of the specimen spread with antibiotics were smaller than non spread.