• Title/Summary/Keyword: carbonates

Search Result 217, Processing Time 0.032 seconds

Reprocessing of spent nuclear fuel in carbonate media: Problems, achievements, and prospects

  • Stepanov, Sergei I.;Boyarintsev, Alexander V.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2339-2358
    • /
    • 2022
  • The review discusses various alternative approaches for spent nuclear fuel (SNF) reprocessing in aqueous carbonate media. The main stages, schemes, and methods of the most well-known and well-described processes for reprocessing SNF and some high-level radioactive waste using carbonate systems developed by research groups in Japan, the United States of America, the Republic of Korea, and the Russian Federation described and compared. The main advantages of such methods are outlined compared to the SNF reprocessing in nitric acid media. The levels of development and proximity of the designed processes to the industrial implementation are shown. The main principle achievements, prospects, and routes for the refinement of such methods for the technology of SNF reprocessing and handling of high-level radioactive waste formulated.

Effects of carbonation on hydration characteristics of ordinary Portland cement at pre-curing condition

  • Kim, Gwang Mok
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • Raman spectroscopy is effective to investigate functional groups via molecular vibration. The technique offers the structural information of compounds including subtle changes in the chemical composition of local atomic coordination without critical damage. Thus, the effect of carbonation on the hydration characteristics of Portland cement under pre-curing conditions for carbonation was investigated via Raman spectroscopy in the present study. Gaseous CO2 was injected within 60 seconds, and the reaction time was varied from 0 minute to 90 minutes. The test results indicated that the Ca/Si ratio of C-S-H reduced immediately after mixing and then the C-S-H with a relatively high Ca/Si ratio coexisted as the reaction time increased. The calcium carbonates formed in the present study included calcite and amorphous calcium carbonates. The test results via Raman spectroscopy provide valuable information about the carbonation characteristics of OPC under pre-curing conditions for carbonation.

The Fate of As and Heavy Metals in the Flooded Paddy Soil Stabilized by Limestone and Steelmaking Slag (석회석과 제강슬래그를 이용하여 안정화한 담수된 논토양의 비소 및 중금속의 거동변화)

  • Koh, Il-Ha;Kim, Eui-Young;Ji, Won Hyun;Yoon, Dae-Geun;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.7-18
    • /
    • 2015
  • The characteristics of As and heavy metals depend on the oxidation/reduction condition of the soil environment. The most heavy metals are immobilized by the reduction condition whereas As, Fe and Mn become more soluble. Therefore this study estimated the stabilization efficiency of the agricultural paddy soil in the vicinity of the abandoned mine using a flooded column test including analysis of the soil solution, contaminants fractionation and rice grain. Limestone and steelmaking slag were used as amendments for stabilization of the contaminated soil. In an analysis of the soil solution, the mobile characteristics of Fe and Mn, which were used as electron acceptors of the microorganisms, were controlled by increasing the pH by adding alkali amendments. This means that the contaminants combined with Fe and Mn can be stable under flooded reduction condition. However, the concentrations of cationic heavy metals (Cd, Pb, and Zn) were also decreased without amendments because the carbonates produced from microbial respiration increased the pH of the soil solution. In the amended soil, the specific sorbed fraction of As and carbonates fraction of heavy metals were increased when compared to the control soil at the end of the column test. Especially in heavy metals, the increase of carbonates fraction seems to be influenced by alkali amendments rather than microbial respiration. Because of the stabilization effect in the flooded paddy soil, the contents of As and Zn in rice grain from amended soil were lower than that of the control soil. But additional research is needed because of the relatively higher Pb content identified in the rice grain from the amended.

The Crystal Structure of Cholesteryl Carbonates (콜레스테롤 카보네이트 결정구조에 관한 연구)

  • 박영자;신정미
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.8-19
    • /
    • 1996
  • Cholestryl Methyl and Propyl Carbonate(CH3OCOOC27H45, C3H7OCOOC27H45) are monoclinic, space group P21, with a=17.014(1), b=7.682(1), c=10.612(1)Å, β=103.05(1)°, Z=2, V=1351.16Å3, Dc=1.09 g/cm3 for methyl carbonate, and with a=13.683(1), b=11.864(2), c=18.904(2)Å, β=106.30(1)°, Z=4, V=2945.4Å3, Dc=1.06 g/cm3, Dm=1.06 g/cm3 for propyl carbonate. The intensity data were collected on an Enraf-Nonius CAD-4 diffractometer with a graphite monochromated Cu-Kα radiation. The structure was solved by direct methods and refined by full matrix least-squares methods. The final R factor was 0.051 for 2323 observed reflections for methyl carbonate and 0.074 for 3323 observed reflections for propyl carbonate. Compared with other cholesteryl derivatives, the cholesteryl ring and tail region of the molecules are normal. The molecules are stacked in clearly separated layers. At center of the layer, there are cholesteryl-C(17) side chain interactions. The interface region between layers is occupied by the loosely packed methyl carbonate chains. The structure of cholesteryl propyl carbonates have two propyl carbonates have two molecules(A, B) that are not related by crystal symmetry and have their tetracyclic system almost parallel to each other. Cholesteryl-cholesteryl interactions between symmetry related A-molecules, and cholesteryl-C(17) side chain interactions between symmetry related B-molecules occur at the center of the layers and these molecules stack along 2₁ screw axes. There are also C(17)chain-carbonate chain and C(17)chain-C(17)chain interactions in the interface region between layers. There is efficient packing between cholesteryl ring systems in propyl carbonates. Temperature ranges of cholesteric mesophases of cholesteryl alkyl cargonates are narrow for methyl, pentyl and hexyl carbonates, and rather broader for ethyl and propyl carbonates. Cholesteryl-isotropic transitions change very little with chain length.

  • PDF

Cyclic Carbonates via Thermal Degradation of Poly(alkylene carbonate)s (Poly(alkylene carbonate)의 열분해에 의한 고리형 카보네이트의 합성)

  • 이윤배;김원길
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.235-237
    • /
    • 2002
  • 지구상에서 일어나는 많은 환경문제 중 지구의 온난화 현상은 지구의 존폐를 가름할 정도로 중요한 문제이다. 이 온난화현상을 일으키는 주범이 바로 이산화탄이다. 이와 같은 해결책의 일환으로 CO₂를 이용하여 epoxide를 가지고, 여러 가지 고분자를 고압의 조건에서 합성해 보고, 또한 합성된 고분자의 열적분해로 이루어지는 메커니즘을 규명해 보았다.

A Kinetic Study on Ethylaminolysis of Phenyl Y-Substituted-Phenyl Carbonates: Effect of Leaving-Group Substituents on Reactivity and Reaction Mechanism

  • Song, Yoon-Ju;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1722-1726
    • /
    • 2013
  • A kinetic study on nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5j) with ethylamine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of $k_{obsd}$ vs. [amine] are linear for the reactions of substrates possessing a strong electron-withdrawing group (EWG) but curve upward for those of substrates bearing a weak EWG, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. The reactions have been concluded to proceed through a stepwise mechanism with one or two intermediates (a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$) depending on the nature of the substituent Y. Analysis of Bronsted-type plots and dissection of $k_{obsd}$ into microscopic rate constants have revealed that the reactions of substrates possessing a strong EWG (e.g., 5a-5f) proceed through $T^{\pm}$ with its formation being the rate-determining step, while those of substrates bearing a weak EWG (e.g., 5g-5j) proceed through $T^{\pm}$ and $T^-$.