• Title/Summary/Keyword: carbonaceous

Search Result 264, Processing Time 0.027 seconds

Preparation of radiolabeled polycyclic aromatic hydrocarbon assemblies for biological assessment of diesel exhaust particulates

  • Lee, Chang Heon;Shim, Ha Eun;Song, Lee;Jeon, Jongho
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.90-94
    • /
    • 2018
  • The potential health risk from inhalational exposure of diesel exhaust particulates (DEP) has gained considerable scientific interests. However, the long-term in vivo behavior of DEP have not been clearly understood due to the difficulty of accurate analysis of these substances in a living subject. We herein demonstrate a detail protocol for the preparation of radiolabeled DEP using a radioactive-iodine-tagged pyrene analog. The purified $^{125}I$-labeled pyrene ($[^{125}I]1$) was obtained with a good radiochemical yield ($32{\pm}4%$, n=3) and high radiochemical purity (>99%) from the stannylated precursor 2. Next, the purified $[^{125}I]1$ was successfully assembled into the DEP suspension in an efficient manner. The radiolabeled DEP was highly stable in a mouse serum for 7 days without significant deiodination or dissociation of $[^{125}I]1$. These results clearly indicate that the present radiolabeling method will be useful for biodistribution study of carbonaceous particulates in vivo.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

Study of Pore Development Model in Low Rank Solid Fuel Using FERPM (FERPM을 적용한 저등급 고체연료의 기공발달 모델 특성 연구)

  • PARK, KYUNG-WON;KIM, GYEONG-MIN;JEON, CHUNG-HWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.178-187
    • /
    • 2019
  • Due to the increasing demand of high rank coal, the use of low rank coal, which has economically advantage, is rising in various industries using carbonaceous solid fuels. In addition, the severe disaster of global warming caused by greenhouse gas emissions is becoming more serious. The Republic of Korea set a goal to reduce greenhouse gas emissions by supporting the use of biomass from the Paris International Climate Change Conference and the 8th Basic Plan for Electricity Supply and Demand. In line with these worldwide trends, this paper focuses on investigating the combustibility of high rank coal Carboone, low rank coal Adaro from Indonesia, Baganuur from Mongolia and, In biomass, wood pellet and herbaceous type Kenaf were simulated as kinetic reactivity model. The accuracy of the pore development model were compared with experimental result and analyzed using carbon conversion and tau with grain model, random pore model, and flexibility-enhanced random pore model. In row lank coal and biomass, FERPM is well-matched kinetic model than GM and RPM to using numerical simulations.

Development of a multi criteria decision analysis framework for the assessment of integrated waste management options for irradiated graphite

  • Abrahamsen-Mills, Liam;Wareing, Alan;Fowler, Linda;Jarvis, Richard;Norris, Simon;Banford, Anthony
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1224-1235
    • /
    • 2021
  • An integrated waste management approach for irradiated graphite was developed during the European Commission project 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste'. This included the identification of potential options for the management of irradiated graphite, taking account of storage, retrieval, treatment and disposal methods. This paper describes how these options can be assessed using multi-criteria decision analysis (MCDA) for a case study relating to a generic power reactor. Criteria have been defined to account for safety, environmental, economic and socio-political factors, including radiological impact, resource usage, economic costs and risks. The impact of each option against each criterion has been assessed using data from the project and the wider literature. A linear additive approach has been used to convert the calculated impacts to scores. To account for the relative importance of the criteria, example weightings were allocated. This application has shown that MCDA approaches can be used to support complex decisions regarding irradiated graphite management, accounting for a wide range of criteria. Use of this approach by individual countries or organisations will need to account for the specific options, scores, weightings and constraints that apply, based on their national strategies, regulatory requirements and public acceptability.

Photocatalytic Membrane for Degradation of Antibiotics: A Review (항생제 분해용 광촉매막: 리뷰)

  • Rabea, Kahkahni;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.304-313
    • /
    • 2022
  • There is evidence that the presence of active pharmaceutical ingredient (APIs) are a danger for aquatic ecosystems and the human health. The presence of APIs such as tetracycline, an antibiotic, in water causes antimicrobial resistance (AMR) in microorganisms inflicting enormous costs on individuals and society. Membranes embedded with catalysts such as TiO2 or bismuth based catalysts degrade and separate the organic effluents from wastewater. The photocatalytic activity of the catalysts can be enhanced with noble metal doping and addition of carbonaceous materials and formation of heterojunction with other semiconductors. The recollection of photoctalysts is possible through the immobilization of the photocatalysts in polymeric membranes. In this review, the degradation of antibiotics in water is discussed.

Characteristics of Individual Particles for PM2.5 Collected around Busan North Port (부산 북항 주변지역에서 포집된 PM2.5의 개별입자 특성)

  • Hyun, Sangmin;Cheon, Seong-Woo;Kim, Wonnyon;Kang, Nayeon;Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.781-791
    • /
    • 2022
  • In order to investigate the characteristics of the effects of various emission sources such as ships around the Busan North Port area, PM2.5 samples were analyzed by SEM/EDS (scanning electron microscopy with energy dispersive x-ray spectrometer). In the port city Busan, the main emission source of PM2.5 is ships, and soot was observed as the main exhaust particles of a ship diesel engine. As a result of the individual particle analysis of PM2.5 at the sampling site, carbonaceous particles such as soot and water droplet-shaped, which are considered to be exhausted from ships, were constantly observed. And some spherical Fe-rich particles also appeared.

K-Ar and $^{40}$ Ar/$^{39}$ Ar Ages from Metasediments in the Okcheon Metamorphic Belt and their Tectonic Implication (옥천 변성대 변성퇴적암의 K-Ar및 $^{40}$ Ar/$^{39}$ Ar 연대와 그 의의)

  • 김성원;오창환;이덕수;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-99
    • /
    • 2003
  • Muscovite and biotite from 52 metasediments and 5 granites in the Hwasan area, the southwest of the Okcheon metamorphic belt and the Miwon-Jeungpyeong area, central Okcheon metamorphic belt were dated by the K-Ar and $^{40}$ Ar/$^{39}$ Ar methods. Muscovite and biotite ages from metapelitic and psammitic rocks (metasediments) of the Boeun and Pibanryeong units in the Hwasan area are concentrated in the mid-Jurassic (149-180 Ma). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for metapelitic and psammitic rocks of the Boeun and Pibanryeong units in the Miwon-Jeungpyeong area show complicated age distribution. Muscovite and biotite ages are classified by three groups, 142-194 Ma, 216-234 Ma, and 241-277 Ma. Younger (Cretaceous) ages occur only in metasediments close to Cretaceous granitic rocks in the southeastern region and the older ages of 216-277 Ma are restricted to the middle Part of the Jeungpyeong area. Most ages in the other area of the central Okcheon metamorphic belt fall between 142-194 Ma (Jurassic). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for granite from the northern part in the both the southwest and central Okcheon metamorphic belt also gave middle Jurassic ages (156-168 Ma). The similar ages from both metasediments and granites in the study areas indicate simultaneous cooling of both rocks to 300-350$^{\circ}C$ during the middle Jurassic. The state of graphitization of carbonaceous material of all metasediments in the study areas Indicates fully ordered graphite falling within a small range, from 3.353 to 3.359 ${\AA}$, which indicate amphibolite facies regional metamorphism. In the southern sector of the Boeun unit from the Hwasan area, metamorphic grade indicated by mineral paragenesis during regional intermediate-P/T metamorphism is greenschist facies. Whereas, the $d_{002}$ values for carbonaceous materials in the same sector show fully ordered graphite (ca. 500$^{\circ}C$) indicating amphibolite facies. This result with the concentration of mica ages of metasediments into the middle Jurassic, the presence of low-P/T thermal metamorphic zone (>500$^{\circ}C$) in the metasediments close to the Jurassic granite and the regional intrusion of Jurassic granites and their middle Jurassic intrusion and cooling ages may indicate the low-P/T regional thermal event during the early(\ulcorner)-middle Jurassic after main intermediate-P/T metamorphism which formed main mineral assemblage regionally in the study area. The regional thermal event failed, however, to reset the mineral assemblage of regional intermediate-P/T metamorphism except for narrow aureole (1-2 km) around Jurassic granite because e duration of thermal effect was relatively short by repid cooling of the Jurassic granite. In the middle part of the Jeungpyeong area, central Ogcheon metamorphic belt, muscovite and biotite K-Ar ages from 5 samples are 263-277 Ma and 241-249 Ma, respectively. An intermediate-P/T metamorphism is currently accepted to have occurred between 280 and 300 Ma. Therefore, the muscovite and biotite ages can be interpreted as cooling ages after Ml metamorphism indicating rapid cooling to ca 350$^{\circ}C$ between 280-300 Ma and 263-271 Ma, and biotite ages indicate slower cooling to ca. 300$^{\circ}C$ between 263-277 Ma and 241-249 Ma. However, more detail study is needed to confirm why the Permian to Triassic ages occur only in the middle Part of the Jeungpyeong area.a.

Synthesis of Activated Carbon from Rice Husk Using Microwave Heating Induced KOH Activation

  • Nguyen, Tuan Dung;Moon, Jung-In;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.321-327
    • /
    • 2012
  • The production of functional activated carbon materials starting from inexpensive natural precursors using environmentally friendly and economically effective processes has attracted much attention in the areas of material science and technology. In particular, the use of plant biomass to produce functional carbonaceous materials has attracted a great deal of attention in various aspects. In this study the preparation of activated carbon has been attempted from rice husks via a chemical activation-assisted microwave system. The rice husks were milled via attrition milling with aluminum balls, and then carbonized under purified $N_2$. The operational parameters including the activation agents, chemical impregnation weight ratio of the calcined rice husk to KOH (1:1, 1:2 and 1:4), microwave power heating within irradiation time (3-5 min), and the second activation process on the adsorption capability were investigated. Experimental results were investigated using XRD, FT-IR, and SEM. It was found that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area. The activated carbons prepared by microwave heating with an activation process have higher surface area and larger average pore size than those prepared by activation without microwave heating when the ratio with KOH solution was the same. The activation time using microwave heating and the chemical impregnation ratio with KOH solution were varied to determine the optimal method for obtaining high surface area activated carbon (1505 $m^2$/g).

Effect of Lithium Bis(Oxalato)Borate Additive on Thermal Stability of Si Nanoparticle-based Anode (리튬 이차 전지용 실리콘 나노입자 음극의 고온 열안정성에 대한 Lithium bis(oxalato)borate첨가제의 효과)

  • Kim, Min-Jeong;Choi, Nam-Soon;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.79-85
    • /
    • 2014
  • Silicon (Si) has been investigated as promising negative-electrode (anode) materials because its theoretical specific capacity of 4200 mAh/g for $Li_{4.4}Si$ is far higher than that of carbonaceous anodes in current commercial products. However, in practice, the application of Si to Li-ion batteries is still quite challenging because Si suffers from severe volume expansion and contraction and lead to a continuous solid electrolyte interphase (SEI)-filming process by cracking of Si. This process consumes the limited $Li^+$ source, builds up thick and unstable SEI layer on the Si active materials, and will eventually disable the cell. Since unstable SEI reduces electrochemical performance and thermal stability of the Si anode, the surface chemistry of the anode should be modified by using a functional additive. It is found that lithium bis(oxalato)borate (LiBOB) as an additive effectively protected the Si anode surface, improved capacity retention when stored at $60^{\circ}C$, and alleviated exothermic thermal reactions of fully lithiated Si anode.

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF