Browse > Article
http://dx.doi.org/10.5229/JKES.2014.17.2.79

Effect of Lithium Bis(Oxalato)Borate Additive on Thermal Stability of Si Nanoparticle-based Anode  

Kim, Min-Jeong (Graduate School of Energy Science and Technology, Chungnam National University)
Choi, Nam-Soon (School of Green Energy, Ulsan National Institute of Science and Technology (UNIST))
Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.2, 2014 , pp. 79-85 More about this Journal
Abstract
Silicon (Si) has been investigated as promising negative-electrode (anode) materials because its theoretical specific capacity of 4200 mAh/g for $Li_{4.4}Si$ is far higher than that of carbonaceous anodes in current commercial products. However, in practice, the application of Si to Li-ion batteries is still quite challenging because Si suffers from severe volume expansion and contraction and lead to a continuous solid electrolyte interphase (SEI)-filming process by cracking of Si. This process consumes the limited $Li^+$ source, builds up thick and unstable SEI layer on the Si active materials, and will eventually disable the cell. Since unstable SEI reduces electrochemical performance and thermal stability of the Si anode, the surface chemistry of the anode should be modified by using a functional additive. It is found that lithium bis(oxalato)borate (LiBOB) as an additive effectively protected the Si anode surface, improved capacity retention when stored at $60^{\circ}C$, and alleviated exothermic thermal reactions of fully lithiated Si anode.
Keywords
Silicon; Solid electrolyte interphase; Electrolyte; Additive; Thermal reactions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Zinigrad, L. Larush-Asraf, G. Salitra, M. Sprecher, and D. Aurbach, Thermochim. Acta, 457, 64-69 (2007).   DOI   ScienceOn
2 D. Aurbach, M. L. Daroux, P. W. Faguy, and E. Yeager, J. Electrochem. Soc., 134, 1611-1620 (1987).   DOI   ScienceOn
3 D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, and H. Yamin, J. Electrochem. Soc., 141, 603-611 (1994).   DOI   ScienceOn
4 S.-Y. Ha, J.-G. Han, Y.-M. Song, M.-J. Chun, S.-I. Han, W.-C. Shin, and N.-S. Choi, Electrochim. Acta, 104, 170-174 (2013).   DOI   ScienceOn
5 U. Kasavajjula, C. Wang, and A. J. Appleby, J. Power Sources, 163, 1003-1039 (2007).   DOI   ScienceOn
6 N.-S. Choi, I. A. Profatilova, S.-S. Kim, and E.-H. Song, Thermochim. Acta, 480, 10-14 (2008).   DOI   ScienceOn
7 Y. Wang, and J. Dahn, J. Electrochem. Soc., 153, A2188-A2191 (2006).   DOI   ScienceOn
8 M. N. Richard and J. R. Dahn, J. Electrochem. Soc., 146, 2068-2077 (1999).   DOI   ScienceOn
9 Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, J. Power Sources, 208, 210-224 (2012).   DOI   ScienceOn
10 J.-K. Park, Principles and applications of lithium secondary batteries (2010).
11 H. Maleki and J. N. Howard, J. Power Sources, 137, 117-127 (2004).   DOI   ScienceOn
12 I. A. Profatilova, T. Langer, J. P. Badillo, A. Schmitz, H. Orthner, H. Wiggers, S. Passerini, and M. Winter, J. Electrochem. Soc., 159, A657-A663 (2012).   DOI
13 N.-S. Choi, K. H. Yew, H. Kim, and S.-S. Kim, J. Power Sources, 172, 404-409 (2007).   DOI   ScienceOn
14 E. Peled, D. Golodnitsky, C. Menachem, and D. B. Tow, J. Electrochem. Soc., 145, 3482-3486 (1998).   DOI   ScienceOn
15 I. A. Profatilova, C. Stock, A. Schmitz, S. Passerini, and M. Winter, J. Power Sources., 222, 140-149 (2013).   DOI   ScienceOn
16 B. Koo, H. Kim, Y. Cho, K. T. Lee, N.-S Choi, and J. Cho, Angew. Chem. Inter. Ed., 51, 8762-8767 (2012).   DOI   ScienceOn