• Title/Summary/Keyword: carbonaceous

Search Result 262, Processing Time 0.026 seconds

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire (자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착)

  • Kim, Younjung;Uh, Eun Jeong;Choi, Jong Ha;Hong, Yong Pyo;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

Charge-Discharge Characteristics of Carbonaceous Materials for a Negative Electrode in Lithium-Ion Batteries (리튬이온전직용 카본계부극재료의 충방전 특성)

  • 김정식;박영태;김상열;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.69-74
    • /
    • 1999
  • Graphite and carbonaceous materials intercalate and deintercalate Li-ion reversibly into their layered structures. These materials show an excellent capacity for using a negative electrode in Li-ion batteries, because the electrochemical potential of Li-ion intercalated carbon is almost identical with that of lithium metal. Carbon used in this study was obtained by the pyrolysis of petroleum pitch, and heat-treated at the several temperatures between $700^{\circ}C$ and $1300^{\circ}C$. XRD analysis revealed that crystallization of carbon increased with increasing the heat treatment temperature. Charge/discharge properties were studied by a constant-current step at the rate of 0.1C, and the interfacial reaction between the electrolyte and the surface of carbon electrode was studied by cyclic voltammetry. Cell capacities were investigated in terms of the heat treatment temperature and the cycle number. Reversible capacity increased with the heat treatment temperature up to $1000^{\circ}C$, thereafter decreased continuously. Also, charge capacity decreased with the cycle number, while the reversibility improved with it.

  • PDF

Thermal Stability of Furfuryl Alcohol/Graphite Powder Mixtures for Impregnation of Carbonaceous Composite (탄화복합재료 함침을 위한 퍼퓨릴알콜/흑연분말 혼합물의 열안정성)

  • An, Yeong-Seok;Jo, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.299-303
    • /
    • 1998
  • We examined, using thermoanalytical methods, the effects of $2000^{\circ}C$ heat-treated graphite powders and heating rate of cure after impregnation on the thermal stability and carbon yield of furfuryl alcohol, which is frequently used not only as an impregnant but also as a matrix precursor for carbon fiber-reinforced carbon composites. It was founded that the addition of 30wt% graphite powders to furfuryl alcohol and the heating rate of $35^{\circ}C$/min showed the highest thermal stability of furfuryl alcohol/graphite powder mixture. The carbon yield above $1000^{\circ}C$ was enhanced more than 10% in comparison with the absence of graphite powders. It would be expected that this result can contribute to some extent to reduce the repeating number of processing cycle (carbonization-impregnation-cure-re-carbonization) required to densify a carbonaceous composite.

  • PDF

Biocompatible Dispersion Methods for Carbon Black

  • Kim, Hwa;Park, Kwangsik;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.209-216
    • /
    • 2012
  • The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer's solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were $85.0{\pm}42.9$ and $112.4{\pm}67.9$ nm, respectively, in plasma; the corresponding sizes in culture media were $84.8{\pm}38.4$ and $164.1{\pm}77.8$ nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm ($73.6{\pm}28.8$ and $80.1{\pm}30.0$ nm for N330 and $349.5{\pm}161.8$ and $399.8{\pm}181.1$ nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects.

The Fractionation Characteristics of BOD in Streams (하천에서 BOD 존재형태별 분포 특성)

  • Kim, Ho-Sub;Oh, Seung-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.92-102
    • /
    • 2021
  • In this study, the distribution characteristics according to the type of BOD and the effect of nitrogenous oxygen demand (NOD) and algal oxygen demand on BOD in three streams (Bokhacheon, Byeongseongcheon, and Gulpocheon) were evaluated. Although the BOD and NOD concentrations demonstrated a difference in the three streams, the carbonaceous BOD(CBOD)/BOD ratio was 0.75 (p=0.053, one-way ANOVA), and there was no significant difference in the three streams (r2≥0.92, p<0.0001). The NOD concentration of the Bokhacheon with high NH3-N was 1.7±1.3 mg/L, which was the highest among the three streams and showed a significant correlation with BOD. Seasonal variations in NOD in the three streams did not show a significant correlation with changes in NH3-N concentration (r2<0.28, p≥0.1789), and there was no significant difference in NOD even though NH3-N concentration in Gulpocheon was about twice that of Byeongseongcheon (p=0.870, one way ANOVA). The particulate CBOD(PCBOD)/CBOD ratio of the three streams was 0.55~0.64, and about 60% of the biodegradable organic matter was present in the particulate form. When the Chl.a concentration in the stream was more than 7 ㎍/L, the PCBOD tended to increase with the Chl.a concentration (r2=0.61, p=0.003). In the three streams, particulate NOD accounted for 81% of NOD; however, despite the large variation in NH3-N concentration (0.075~3.182 mg/L), there was no significant difference in soluble NOD(SNOD) concentration that ranged from 0.1 to 0.3 mg/L. In this study, the low contribution rate of SNOD to NOD is considered as a result of the removal of nitrifying bacteria along with the particles during the filtration process.

Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores (무작위 에칭 흑연 기공을 가지는 탄소기반 흡착제에 의한 산소, 질소 및 아르곤의 흡착 계산)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • The adsorption equilibria of oxygen, nitrogen and argon on carbonaceous adsorbent with slit-shaped and randomly etched graphite (REG) pores were calculated by molecular simulation method. Reliable models of adsorbents and adsorbates for adsorption equilibria are important for the correct design of industrial adsorptive separation processes. At the smallest physical pore of $5.6{\AA}$, only oxygen molecules were accommodated at the center of the slit-shaped pore, and from $5.9{\AA}$ nitrogen and argon molecules could be accommodated in the pores. Slit pores showed higher adsorption capacity compared with REG pores with same averaged reenterance pore size due to dead volume and inaccessible volume in defected pores. And it was shown the adsorption capacities of oxygen and argon was same in larger pore size. From calculated adsorption isotherms at 298 K it showed that the adsorption capacity ratio of oxygen to nitrogen is increased as pressure is increased.

The development of UV falme detector (UV 화재감지장치 개발)

  • Gwon, O-Seung;Jeong, Chang-Gi;Lee, Bok-Yeong
    • Fire Protection Technology
    • /
    • s.28
    • /
    • pp.48-54
    • /
    • 2000
  • The technique detects radiant energy form a flaming fire of fuels contained carbonaceous material can be applied to fast growing fires. This technique applied detectors are ultimately effective when early detecting fire alarm system is required or the smoke and heat detectors can not applied. In Korea Fire regulation, a flame detector should be install in case that the installation height is higher than 20[m], chemical plant, hangar refinery. Therefore it is really necessary that a flame detector has to be developed as soon as possible. With foundation technique of flame detector, ideal sensing element and stable circuit design, a trial UV flame detector is manufactured. The stable and reliable technique of flame detector is established through the repeateed perfomance test and modification. An early detecting fire alarm device is developed through the modification, supplement of the structure and circuit. Results of the R & D for the manufacture of an excellent flame detecting device is carried out with the establishment of technique for the mass production and the qualified manufacturing process.

  • PDF

Studies of Electric Double Layer Capacitors Used For a Storage Battery of Dye Sensitized Solar Cell Energy

  • Kim Hee-Je;Jeon Jin-An;Sung Youl-Moon;Yun Mun-Soo;Choi Jin-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.251-256
    • /
    • 2006
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell (DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results, the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on the central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

Preparation of the activated carbon for the canister form cokes

  • In-Ki, Kim;Han-Jun, Oh;Jang, Jin-Seok;Youm, Hee-Nam;Young-Shin, Ko
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.67-71
    • /
    • 1997
  • Activated carbons are the microporous carbonaceous adsorbents which are prepared from carbon-containing source materials such as wood, coal, lignite, peteroleum and sometimes synthetic high polymers. [1-2] Activated carbons shows an ability to adsorbe hydrocarbons of the gas phase. Activated carbons are used in the purification of many kinds of gas phases like hexane, benzene, toluene, gasoline, phenol etc.[3] In this study, cokes from bitminous coal were activated for the purpose of preparing the activated carbons by steam activation. The effect of the activation temperature, time, steam concentration and flow rate on the n-butane adsorption, burn off, surface area and average pore size of the activated carbons, were investigated. The adsorption characteristics of the activated carbons for gasoline are indirectly estimated by n-butane adsorption.

  • PDF

Ammonia Adsorption of Activated Carbons Synthesized from Polymeric Precursor (고분자 전구체로부터 합성된 활성탄소를 이용한 암모니아 흡착)

  • Jung, Woo-Young;Park, Soo-Jin;Pak, Pyong-Ki
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.311-312
    • /
    • 2003
  • Activated carbons (ACs) are widely used in adsorption for the removal of gaseous and aqueous pollutants[1]. Although a wide range of carbonaceous materials can be converted into ACs, the coal and lingocellulosic materials are the most commonly used starting materials for the production of commercial ACs. Recently, there are a quite large number of studies regarding the preparation of ACs from various polymeric materials because of high carbon yield and low ash content In this work, ACs are prepared from polystyrene (PS) by chemical activation with potassium hydroxide and the effect of the KOH-to-PS ratio to adsorption of ammonia is investigated. (omitted)

  • PDF