• Title/Summary/Keyword: carbon-slurry fuel

Search Result 18, Processing Time 0.027 seconds

Additive Effect in the Preparation of Carbon-slurry Fuel (Carbon-slurry 연료의 제조에 있어서 첨가제의 효과)

  • Cho, Min-Ho;Lee, Dae-Yeop;Han, Jeong-Sik;Lee, Ik-Mo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Preparation and characterization of carbon-slurry fuel with high dispersion have been carried out. Carbon-slurry fuel was obtained by mixing Jet A-1 liquid fuel with appropriate carbon powders and additives. Dispersion of carbon in Jet A-1 was affected by various factors such as mixing temperature, characteristics of carbon powders, and type and amount of additives. Among these factors, the stability of the slurry fuel was most dependent on the type of additive. A variety of additives such as anionic, cationic, and nonionic additives was tested for the dispersion of carbon in Jet A-1. It was found that anionic additives based on sodium salts showed the highest dispersion of carbon-slurry fuels. The degree of dispersion could be monitored by measuring the luminosity.

Research on the Dispersion Stability and Scale up of Carbon Slurry Fuel (카본슬러리 연료의 분산안정성 개선 및 scale up 제조 연구)

  • Cho, Min-Ho;Yang, Mun-Kyu;Lee, Ik-Mo;Cho, Joon-Hyun;Kwon, Tae-Soo;Jeong, Byung-Hun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.34-40
    • /
    • 2009
  • For the preparation of carbon-slurry fuel, the effects of process parameters on the carbon dispersion stability in the liquid fuel have been investigated. The dispersion stability of carbon-slurry fuels could be monitored by measurements of particle size and carbon contents in the different positions, and observation of dispersion states after centrifuging. Through the application of various additives, it was found that NB463S84 based on polyolefin succinimde showed the best dispersion and longest stability life of carbon-slurry fuel. Also, PIBSI (polyisobutenyl succimide) with the similar functional groups to NB463S84 was effectively synthesized and same dispersion stability was verified by application to carbon-slurry fuel. Finally, the possibility of practical use of carbon-slurry fuels was confirmed by application of the mixing conditions obtained from g scale to kg scale preparation.

Research on the Dispersion Stability and Scale up of Carbon Slurry Fuel (카본슬러리 연료의 분산안정성 개선 및 scale up 제조연구)

  • Jo, Min-Ho;Yang, Mun-Kyu;Lee, Ik-Mo;Cho, Joon-Hyun;Kwon, Tae-Soo;Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.459-462
    • /
    • 2008
  • In manufacture of slurry fuel, the effects of process parameters on the carbon dispersion stability have been investigated. The particle size and contents of the carbon slurry taken from 3 (top, medium, bottom) positions in fuel reservoir were analyzed to estimate the dispersion of the carbon in Jet A-1. Through the application of various additives, it was found that NB463S84 additive showed the best dispersion and stability of carbon at accelerated gravity condition. The mixer performance was compared by the observation of height change of carbon-containing layer and measurement of particle sizes at the same conditions. Application of the mixing conditions obtained from the lab-scale to bench scale manufacture confirmed the practical feasibility of our research.

  • PDF

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition

  • Kim, Jiyoung;Im, Ui-Su;Lee, Byungrok;Peck, Dong-Hyun;Yoon, Seong-Ho;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.19
    • /
    • pp.72-78
    • /
    • 2016
  • Spinnable pitches and carbon fibers were successfully prepared from petroleum or coal pyrolysis residues. After pyrolysis fuel oil (PFO), slurry oil, and coal tar were simply filtered to eliminate the solid impurities, the characteristics of the raw materials were evaluated by elemental analysis, 13C nuclear magnetic resonance spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and so on. Spinnable pitches were prepared for melt-spinning carbon fiber through a simple distillation under strong nitrogen flow, and further vacuum distillation to obtain a high softening point. Carbon fibers were produced from the above pitches by single-hole melt spinning and additional heat treatment, for oxidization and carbonization. Even though spinnable pitches and carbon fibers were processed under the same conditions, the melt-spinning and properties of the carbon fiber were different depending on the raw materials. A fine carbon fiber could not be prepared from slurry oil, and the different diameter carbon fibers were produced from the PFO and coal tar pitch. These results seem to be closely correlated with the initial characteristics of the raw materials, under this simple processing condition.

Fabrication of Electrolyte for Direct Carbon Fuel Cell and Evaluation of Properties of Direct Carbon Fuel Cell (직접탄소 연료전지용 전해질 제조 및 직접탄소 연료전지 특성 평가)

  • Pi, Seuk-Hoon;Cho, Min-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.786-789
    • /
    • 2011
  • In order to estimate the possibility of applying electrolytes generally used in solid oxide fuel cells(SOFCs) to direct carbon fuel cells(DCFCs), properties of YSZ(yttria stabilized zirconia) electrolyte were evaluated. In this study, vacuum slurry coating method was adapted to coat thin layer on anode support substrate. After sintering the electrolyte at $1400^{\circ}C$ for 5hrs, microstructure was analyzed by using SEM image. Also, gas permeability and ionic conductivity were measured to find out the potential possibility of electrolyte for DCFCs. The YSZ electrolyte represented dense coating layer and low gas permeability value. The ionic conductivity of YSZ electrolyte was high over $800^{\circ}C$. After measurement of the electrolyte properties, direct carbon fuel cell was fabricated and its performance was measured at $800^{\circ}C$.

Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method (열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조)

  • Kim, Sungjin;Park, Sung Bum;Park, Yong-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

Cell Design for Mixed Gas Fuel Cell (혼합가스 주입형 연료전지를 위한 전지 디자인)

  • Park, Byung-Tak;Yoon, Sung Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.860-864
    • /
    • 2005
  • In this study, we fabricated honeycomb type Mixed-Gas Fuel Cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-shaped anode with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites and the others were filled with partial oxidation (POX) catalyst to increase fuel conversion. Furthermore we employed the sol-gel technique which can increase cell performance and decrease carbon coking.

Fabrication and Characteristics of Anode-Supported Tube for Solid Oxide Fuel Cell (습식법에 의한 고체산화물 연료전지용 연료극 지지체관의 제조 및 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyeon;Im, Yeong-Eon
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.659-664
    • /
    • 2000
  • To develop anode-supported tubular cell with proper porosity, we have investigated the anode substrate and t the electrolyte-coated anode tube. The anode substrate was manufactured as a function of carbon content in the range of 20 to 50 vol.%. As the carbon COntent increased, the porosity of the anode substrate increased slightly and the carbon c content with proper porosity is found to be 30 vol.%. The anode-supported tube was fabricated by extrusion process a and the electrolyte layer was coated on the anode tube by slurry coating process. The anode-supported tube was cofired successfully at $^1400{\circ}C$ in air. The porosity of the anode tube was 35%. From the gas permeation test, the anode t tube was found to be porous enough for gas supply. On the other hand, the anode-supported tube with electrolyte layer indicated a very low gas permeation rate. This means that the coated electrolyte was dense.

  • PDF

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF