• 제목/요약/키워드: carbon-ion irradiation

검색결과 45건 처리시간 0.026초

Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

  • Kim, Sangbum;Duong, Pham van;Ha, Donghyup;Oh, Young-Hoon;Kang, Won Nam;Hong, Seung Pyo;Kim, Ranyoung;Chai, Jong Seo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.8-13
    • /
    • 2016
  • Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV ${\alpha}$-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers

  • Saud, Prem Singh;Ghouri, Zafar Khan;Pant, Bishweshwar;An, Taehee;Lee, Joong Hee;Park, Mira;Kim, Hak-Yong
    • Carbon letters
    • /
    • 제18권
    • /
    • pp.30-36
    • /
    • 2016
  • Well-dispersed Ag3VO4 nanoparticles @polyacrylonitrile (PAN) nanofibers were synthesized by an easily controlled, template-free method as a photo-catalyst for the degradation of methylene blue. Their structural, optical, and photocatalytic properties have been studied by X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy equipped with rapid energy dispersive analysis of X-ray, photoluminescence, and ultraviolet-visible spectroscopy. The characterization procedures revealed that the obtained material is PAN nanofibers decorated by Ag3VO4 nanoparticles. Photocatalytic degradation of methylene blue investigated in an aqueous solution under irradiation showed 99% degradation of the dye within 75 min. Finally, the antibacterial performance of Ag3VO4 nanoparticles @PAN composite nanofibers was experimentally verified by the destruction of Escherichia coli. These results suggest that the developed inexpensive and functional nanomaterials can serve as a non-precious catalyst for environmental applications.

Micromonospora purpurea에 의한 gentamicin생성 (Production of Gentamicin by Micromonospora purpurea)

  • 이묘재;유두영
    • 미생물학회지
    • /
    • 제17권3호
    • /
    • pp.152-159
    • /
    • 1979
  • Using Micromonospora strain, gentamicin was produced by fermentation. The increase in gentamicin productivity was studied by strain improvement and systematic optimization of fermentation process variables. The productivity of parent strain of M.purpurea (ATCC15835) was improved by selection of superior mutant after U.V. irradiation and induction of genetamicin resistance. Potato starch and soy bean meal were the best carbon and nitrogen sources for gentamicin fermentation, respectively. The optimum stimulating concentration of Co ion for gentamicin production was 0.006g $CoCl_2$ per liter of broth. Oxygen ws found to be an important factor for gentamicin yield. The optimum pH for the cell growth and gentamicin production were 7.2 and 6.8 respectively. By controlling the pH, oxygen, and other conditions found in this study at the optimal conditions for cell growth and gentamicin production, the total productivity of gentamicin was increased significantly.

  • PDF

광그라프팅에 의한 폴리프로필렌 부직포의 복합기능화 가공(II) -스티렌의 그라프트 반응 및 암모니아 흡착거동 - (Multi-functional Finish of Polypropylene Nonwoven by Photo-induced Graft Polymerization (II) - Grafting of Styrene and Its Ammonia Adsorption Behavior -)

  • 김상률;최창남
    • 폴리머
    • /
    • 제25권5호
    • /
    • pp.642-648
    • /
    • 2001
  • 암모니아 흡착제를 제조하기 위하여 먼저 광(자외선)조사법으로 스티렌을 폴리프로필렌 부직포에 그라프트 중합시키고, 이를 술폰화한 다음에 금속이온과 반응시켜 금속 착체를 제조하였다. 스티렌 농도가 증가할수록 그라프트율은 증가하였으며, 반응시간이 길어질수록 그라프크율은 증가하였다. 한편 제조된 각종 시료의 암모니아 흡착 능력은 치환된 술폰산기의 함량, 흡착시판 및 암모니아 기체 압력이 증가할수록 증가하였으며, 술폰산기의 함량이 4.25 mmol $H^+$/g인 시료의 경우에 6.51 mmol/g의 흡착량을 나타내었다. 금속이온을 착물로 한 시료는 착물화 전의 시료에 비해 흡착능이 우수하였으며, $cO^{+2}$를 착물로 한 경우에 9.90mmo1/g의 암모니아 흡착능을 나타내어, 기존의 활성탄이나 실리카겔보다 효과가 우수하였다.

  • PDF

수직성장된 탄소나노튜브의 선택적 패터닝 (Laser Patterning of Vertically Grown Carbon Nanotubes)

  • 장원석
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1171-1176
    • /
    • 2012
  • 실리콘 기판 위에 플라즈마 기상층착법을 이용하여 합성된 탄소나노튜브를 화학적인 방법이나 전자빔 혹은 이온빔과 같은 진공 챔버 내에서의 공정없이 펨토초레이저를 이용하여 선택적으로 패터닝 하는 방법을 구현하였다. 플라즈마 기상층착법으로 합성된 탄소나노튜브는 수직성장이 가능하며 탄소나노튜브 간의 간격을 조절하여 성장이 가능하다. 이러한 장점으로 전계방출소자, 바이오센서 등의 응용을 위하여 이용되는 합성 방법이다. 이러한 응용을 위하여 선택적으로 나노튜브를 제거하고 탄소나노튜브 끝의 촉매금속을 제거하는 것이 응용의 효율을 높이는데 매우 중요하다. 본 연구에서는 탄소나노튜브의 전기적, 구조적 특성에 영향을 줄 수 있는 화학적인 방법을 사용하지 않고 펨토초레이저를 사용하여 패터닝과 촉매금속을 제거하는 방법을 구현하였다.

액정 디스플레이 배향막을 위한 이온빔 표면조사에 관한 연구 (Ion beam irradiation for surface modification of alignment layers in liquid crystal displays)

  • 오병윤;김병용;이강민;김영환;한정민;이상극;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.41-41
    • /
    • 2008
  • In general, polyimides (PIs) are used in alignment layers in liquid crystal displays (LCDs). The rubbing alignment technique has been widely used to align the LC molecules on the PI layer. Although this method is suitable for mass production of LCDs because of its simple process and high productivity, it has certain limitations. A rubbed PI surface includes debris left by the cloth, and the generation of electrostatic charges during the rubbing induces local defects, streaks, and a grating-like wavy surface due to nonuniform microgrooves that degrade the display resolution of computer displays and digital television. Additional washing and drying to remove the debris, and overwriting for multi-domain formation to improve the electro-optical characteristics such as the wide viewing angle, reduce the cost-effectiveness of the process. Therefore, an alternative to non-rubbing techniques without changing the LC alignment layer (i.e, PI) is proposed. The surface of LC alignment layers as a function of the ion beam (IE) energy was modified. Various pretilt angles were created on the IB-irradiated PI surfaces. After IB irradiation, the Ar ions did not change the morphology of the PI surface, indicating that the pretilt angle was not due to microgrooves. To verify the compositional behavior for the LC alignment, the chemical bonding states of the ill-irradiated PI surfaces were analyzed in detail by XPS. The chemical structure analysis showed that ability of LCs to align was due to the preferential orientation of the carbon network, which was caused by the breaking of C=O double bonds in the imide ring, parallel to the incident 18 direction. The potential of non-rubbing technology for fabricating display devices was further conformed by achieving the superior electro-optical characteristics, compared to rubbed PI.

  • PDF

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 춘계학술발표회 초록집
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

The vacancy diffusion and the formation of dislocation in graphene : Tight-binding molecular dynamics simulation

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.54-55
    • /
    • 2010
  • Vacancy defects in graphene can be created by electron or ion irradiation and those induce ripples which can change the electronic properties of graphene. Recently, the formation of defect structures such as vacancy defects and non-hexagonal rings has been reported in the high resolution transmission electron microscope (HR-TEM) of reduced graphene oxide [1]. In those HR-TEM images, it is noticed that the dislocations with pentagon-heptagon (5-7) pairs are formed and diffuses. Interestingly, it is also observed that two 5-7 pairs are separated and diffuse far away from each other. The separation of 5-7 pairs has been known to be due to their self-diffusion. However, from our tight-binding molecular dynamics simulation, it is found that the separation of 5-7 pairs is due to the diffusion of single vacancy defects and coalescence with 5-7 pairs. The diffusion and coalescence of single vacancy defects is too fast to be observed even in HR-TEM. We also implemented Van der Waals interaction in our tight-binding carbon model to describe correctly bi-layer and multi-layer graphene. The compressibility of graphite along c-axis in our tight-binding calculation is found to be in excellent agreement with experiment. We also discuss the difference between single layer and bi-layer graphene about vacancy diffusion and reconstruction.

  • PDF

이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구 (Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam)

  • 이상극;오병윤;김병용;한진우;김영환;옥철호;김종환;한정민;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF