• Title/Summary/Keyword: carbon utilization

Search Result 630, Processing Time 0.026 seconds

Preparation and characterization of PVDF/alkali-treated-PVDF blend membranes

  • Liu, Q.F.;Li, F.Z.;Guo, Y.Q.;Dong, Y.L.;Liu, J.Y.;Shao, H.B.;Fu, Z.M.
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.417-431
    • /
    • 2016
  • Poly(vinylidene fluoride) (PVDF) powder was treated with aqueous sodium hydroxide to obtain partially defluorinated fluoropolymers with expected properties such as improving hydrophilicity and fouling resistance. Raman spectrum and FT-IR results confirmed the existence of conjugated carbon double bonds after alkaline treatment. As the concentration increased, the degree of defluorination increased. The morphology and structure of membranes were examined. The permeation performance was investigated. The results showed that membrane's hydrophilicity increased with increase of the percentage of alkaline treated PVDF powder. Moreover, in terms of the water contact angle, it decreased from $92^{\circ}$ to a minimum of $68^{\circ}$; while water up take increased from 128 to 138%. Fluxof pure water and the cleaning efficiency increased with the increase of alkaline treated PVDF powder. The fouling potential also decreased with the increase of the percentage of alkaline treated PVDF powder. The reason that makes blending PVDF show different characteristics because of partial defluorination, which led the formation of conjugated C = C bonds and the inclusion of oxygen functionalities. The polyene structure followed by hydroxide attack to yield hydroxyl and carbonyl groups. Therefore, the hydrophilicity of blending membrane was improved. The SEM and porosity measurements showed that no obvious variations of the pore dimensions and structures for blend membranes were observed. Mechanical tests suggest that the high content of the alkaline treated PVDF result in membranes with less tolerance of tensile stress and higher brittleness. TGA results exhibited that the blend of alkaline treated PVDF did not change membrane thermal stability.

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa;Jeong, Hyun Duck;Jung, Bongjin;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1193-1201
    • /
    • 2012
  • The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).

An Overview of Different Techniques on the Microbial Community Structure, and Functional Diversity of Plant Growth Promoting Bacteria

  • Kim, Kiyoon;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Denver, Walitang;Chanratan, Mak;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.144-156
    • /
    • 2016
  • Soil is a dynamic biological system, in which it is difficult to determine the composition of microbial communities. Knowledge of microbial diversity and function in soils are limited because of the taxonomic and methodological limitations associated with studying the organisms. In this review, approaches to measure microbial diversity in soil were discussed. Research on soil microbes can be categorized as structural diversity, functional diversity and genetic diversity studies, and these include cultivation based and cultivation independent methods. Cultivation independent technique to evaluate soil structural diversity include different techniques such as Phospholipid Fatty Acids (PLFA) and Fatty Acid Methyl Ester (FAME) analysis. Carbon source utilization pattern of soil microorganisms by Community Level Physiological Profiling (CLPP), catabolic responses by Substrate Induced Respiration technique (SIR) and soil microbial enzyme activities are discussed. Genetic diversity of soil microorganisms using molecular techniques such as 16S rDNA analysis Denaturing Gradient Gel Electrophoresis (DGGE) / Temperature Gradient Gel Electrophoresis (TGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP), Single Strand Conformation Polymorphism (SSCP), Restriction Fragment Length Polymorphism (RFLP) / Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Ribosomal Intergenic Spacer Analysis (RISA) are also discussed. The chapter ends with a final conclusion on the advantages and disadvantages of different techniques and advances in molecular techniques to study the soil microbial diversity.

The Characteristics of Coal Gasification using Microwave Plasma (마이크로웨이브 플라즈마를 이용한 석탄가스화 특성 연구)

  • Kim, Doo-Il;Lee, Jae-Goo;Kim, Yong-Ku;Yoon, Sang-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.93-99
    • /
    • 2012
  • The investigation of clean and environment-friendly coal utilization technology is actively progressed due to high oil price and serious climate change caused by greenhouse gas emissions. In this study, the plasma gasification was performed using a 6kW microwave plasma unit under various reaction conditions: the particle sizes of coal ($45{\mu}m-150{\mu}m$), $O_2$/fuel ratio (0 - 1.3), and steam/fuel ratio (0 - 1.5). The $H_2$ composition decreases with decreasing coal particle size. With increasing $O_2$/fuel ratio, the $H_2$ composition in the syngas decreased while the $CO_2$ composition increased. As the steam/fuel ratio increased from 0 to 1.5, the $H_2$ composition in the syngas increased while the $CO_2$ composition decreased. From the results, it was proven that the variation of syngas composition greatly affected by $O_2$/fuel ratio than steam/fuel ratio. The $H_2$ composition in the syngas, carbon conversion, and cold gas efficiency increased with increasing plasma power.

Effects of Size of Metal Particles on Soil Microbial Community and Buck Wheat (금속 입자 크기가 토양 미생물 군집과 메밀에 미치는 영향)

  • Kim, Sung-Hyun;Kim, Jung-Eun;Gwak, Young-Ji;Kim, Yun-Ji;Lee, In-Sook
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2011
  • This study was carried out to compare the toxicity of nano and micrometer particles with Cu and Zn on soil microbial community and metal uptake of buck wheat. In microcosm system, soil was incubated for 14 days after soil aliquots were artificially contaminated with 1,000 mg/kg Cu, Zn nano and micro particles, respectively. After then, buck wheat was planted in incubating soils and non incubating soils. After 14 days, we compared bioaccumulation of metal, and microbial carbon substrate utilization patterns between incubating soils and non-incubating soils. The enrichment factor (EF) values of incubating samples were greater than non-incubating soils. Dehydrogenase activity had been inhibited by Cu and Zn nanoparticles in non-incubating soil, as well as it had been inhibited by Zn micro particles in incubating soils. Results of biolog test, it was not significant different between nano particles and micro particles. It cannot be generalized that nanoparticles of metal are always more toxic to soil microbial activity and diversity than micrometer-sized particles and the toxicity needs to be assessed on a case-by-case basis.

The Prospect of Methanol and Its Meaning (메탄올의 전망(展望)과 그 의미(意味))

  • Uhm, Sung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • In this energy and environment conscious age, methanol has come to attention increasingly since the well established process is commercially available to produce methanol from abundant low grade carbonaceous resources ; methane, carbon dioxide, coal and biomass etc. Methanol is a Clean energy source which is a readily storable and transportable liquid. It is elaborated to correlate power generation, city gas and chemical feed stocks including transportation fuel, enhancing the national efficiency of resource utilization as well as reducing the environmental problems for the future via C1 technology. It is emphasized that $CO_2$ could be used to produce methanol as a mean of hydrogen storage as in the nature, which will alleviate the environmental problem such as green house effect.

  • PDF

A Comparative Study on the Formation of Methane Hydrate Using Natural Zeolite and Synthetic Zeolite 5A (천연 제올라이트와 합성 제올라이트 5A를 이용한 메탄 하이드레이트의 생성에 대한 비교 연구)

  • Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.24-32
    • /
    • 2012
  • Natural gas hydrates have a high potential as the 21st century new energy resource, because it have a large amount of deposits in many deep-water and permafrost regions of the world widely. Natural gas hydrate is formed by physical binding between water molecule and gas mainly composed of methane, which is captured in the cavities of water molecules under the specific temperature and pressure. $1m^3$ methane hydrate can be decomposed to the methane gas of $172m^3$ and water of $0.8m^3$ at standard condition. Therefore, there are a lot of practical applications such as separation processes, natural gas storage transportation and carbon dioxide sequestration. For the industrial utilization of methane hydrate, it is very important to rapidly manufacture hydrate. However, when methane hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. So in this study, hydrate formation was experimented by adding natural zeolite and Synthetic zeolite 5A in distilled water, respectively. The results show that when the Synthetic zeolite 5A of 0.01 wt% was, the amount of gas consumed during the formation of methane hydrate was higher than that in the natural zeolite. Also, the natural zeolite and Synthetic zeolite 5A decreased the hydrate formation time to a greater extent than the distilled water at the same subcooling temperature.

Development of Green Drying System Using Waste Heat from Charcoal Kiln (폐열에너지를 활용한 친환경건조시스템 개발)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Jang, Jae-Hyeok;Hwang, Won-Joung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.512-520
    • /
    • 2011
  • This study was preformed to investigate the characteristics of the green drying system for utilizing heat wasted during carbonization process. The green drying system utilizing waste heat is one of environment-friendly equipments because it needs no other energies from fossil fuel and etc. In this study, waste heat from three kilns was collected by stainless connection pipe, and in the green drying system the temperature and humidity was hardly changed. Charcoal charecteristics as fixed carbon, refining degree, hardness, pH, calorific value, and charcoal yield were analyzed to investigate kiln performance due to installation of green drying system. As a result, the green dry system installation hardly affected the characteristics of charcoal. In conclusion, the green drying system can be applied to maximize the profit of the farm household income and contribute to reduce fossil energy.

Report on 24 unrecorded bacterial species of Korea belonging to the phylum Firmicutes

  • Han, Ji-Hye;Joung, Yochan;Kim, Tae-Su;Bae, Jin-Woo;Cha, Chang-Jun;Chun, Jongsik;Im, Wan-Taek;Jahng, Kwang Yeop;Jeon, Che Ok;Joh, Kiseong;Seong, Chi Nam;Yoon, Jung-Hoon;Cho, Jang-Cheon;Kim, Seung Bum
    • Journal of Species Research
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • As an outcome of the study on the bacterial species diversity in Korea, we report 24 unrecorded bacterial species of Korea belonging to the phylum Firmicutes. The unrecorded species excavated through this study were assigned to 12 different genera of 7 families, namely Bacillus, Halobacillus, Lysinibacillus and Thalassobacillus of Bacillaceae, Brevibacillus and Paenibacillus of Paenibacillaceae, Viridibacillus of Planococcaceae, Salinicoccus and Staphylococcus of Staphylococcaceae, Enterococcus of Enterococcaceae, Lactobacillus of Lactobacillaceae, and Lactococcus of Streptococcaceae, respectively. The bacterial isolates were obtained from various ecosystems in Korea. The isolates were identified based on 16S rRNA gene sequences, and those exhibiting at least 99% sequence similarity with known bacterial species but never reported in Korea were selected as unrecorded species. The selected isolates were subjected to further taxonomic characterization including the analysis of cell shape and fine structure using electron microscope, colony color and shapes, enzyme activities and carbon source utilization. The descriptive information on the 24 unrecorded species are provided.