• Title/Summary/Keyword: carbon structures

Search Result 1,439, Processing Time 0.026 seconds

Machinability of Carbon Fiber Epoxy Composites in Turning (선삭가공에 있어서 탄소섬유 에폭시 복합재료의 절삭 특성)

  • Kim, Gi-Soo;Lee, Dai-Gil;Kwak, Yoon-Keun;Nam-Gung, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.63-73
    • /
    • 1991
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability of the carbon fiber epoxy composite materials in turning was experimentally investigated. The cutting mechanism and the Taylor Tool Wear constants were determined and the surface roughness was measured w.r.t. cutting speeds and feed rates.

  • PDF

Alteration of Leaf Surface Structures of Poplars under Elevated Air Temperature and Carbon Dioxide Concentration

  • Kim, Ki Woo;Oh, Chang Young;Lee, Jae-Cheon;Lee, Solji;Kim, Pan-Gi
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • Effects of elevated air temperature and carbon dioxide ($CO_2$) concentration on the leaf surface structures were investigated in Liriodendron tulipifera (yellow poplar) and Populus tomentiglandulosa (Suwon poplar). Cuttings of the two tree species were exposed to elevated air temperatures at $27/22^{\circ}C$ (day/night) and $CO_2$ concentrations at 770/790 ppm for three months. The abaxial leaf surface of yellow poplar under an ambient condition ($22/17^{\circ}C$ and 380/400 ppm) had stomata and epicuticular waxes (transversely ridged rodlets). A prominent increase in the density of epicuticular waxes was found on the leaves under the elevated condition. Meanwhile, the abaxial leaf surface of Suwon poplar under an ambient condition was covered with long trichomes. The leaves under the elevated condition possessed a higher amount of long trichomes than those under the ambient condition. These results suggest that the two poplar species may change their leaf surface structures under the elevated air temperature and $CO_2$ concentration condition for acclimation of increased photosynthesis.

Design of Innovative SMA PR Connections Between Steel Beams and Composite Columns (강재보와 합성기둥에 사용된 새로운 반강접 접합부의 설계)

  • Son, Hong Min;Leon, Roberto T.;Hu, Jong Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.28-36
    • /
    • 2014
  • This study describes the development of innovative connections between steel beams and concrete-filled tube columns that utilize a combination of low-carbon steel and super-elastic shape memory alloy components. The intent is to combine the recentering behavior provided by the shape memory alloys to reduce building damage and residual drift after a major earthquake with the excellent energy dissipation of the low-carbon steel. The analysis and design of structures requires that simple yet accurate models for the connection behavior be developed. The development of a simplified 2D spring connection model for cyclic loads from advanced 3D FE monotonic studies is described. The implementation of those models into non-linear frame analyses indicates hat the recentering systems will provide substantial benefits for smaller earthquakes and superior performance to all-welded moment frames for large earthquakes.

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures

  • Sung, Woo-Yong;Kim, Wal-Jun;Lee, Seung-Min;Lee, Ho-Young;Kim, Yong-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1459-1461
    • /
    • 2005
  • Carbon nanotube -copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field of the structures was about 3.0 $V/{\mu}m$ at the current density of 0.1 ${\mu}A/cm^2$. We observed relatively uniform emission characteristics as well as stable emission currents. CNT-Cu composite plating method is efficient and it has no intrinsic limit on the plating area. Moreover, it gives strong adhesion between emitters and an electrode. The refore, we expect that CNT-Cu composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

  • PDF

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

A Study on Improvement of Cooling Performance through Vent Structure Optimization of Carbon Ceramic Composite Disc (카본 세라믹 복합재 디스크의 벤트 구조 최적화를 통한 냉각성능 향상에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Jeon, G.B.;Kim, B.C.;Kwack, J.H.;Lim, D.W.;Hyun, E.J.;Jeon, T.H.;Lee, J.M.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Recently, use of composite materials has been increasing for body structures and chassis parts in the car industry because of weight reduction effect and excellent mechanical thermal characteristics. However, application of composite materials in brake system is very difficult because it is hard to obtain enough brake performance due to low heat storage capacity of the composite materials. In this paper, we will present new carbon ceramic composite disc with high flow characteristic. To obtain this characteristic, new vent structures were designed by using ARIZ method and substance-field model analysis. The flow effect of these vent structures on the brake performance was verified by pugh matrix and cooling test. The test results show improvement of cooling performance up to $30^{\circ}C$. Finally, These results will improve brake the reliability of the brake performance for the high performance vehicles and electric vehicles.

Deodorization of Non-woven Fabrics Bonded with Activated Carbon (활성탄 함유 부직포의 소취성 평가)

  • Jeong, Dong-Seok;Chun, Tae-Il
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.50-61
    • /
    • 2015
  • The merits of activated carbon for removal of organic compounds have been well known in the various industrial fields. Fixing methods with activated carbon in the non-woven fabric have the advantages of fast adsorption and ease of handling when compared with bonding and coating methods. In this study, we have examined deodorization of non-woven fabrics fixed with activated carbon. We have been tested the deodorization of various kinds activated carbon and non-woven fabric structures. The effective mixing ratio of activated carbon was 5% on the weight of fabrics, which are closely related to the fabric structure. The activated carbon with higher mesh size show the better deodorization effect.

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.

Electrical and transport properties of carbon chains encapsulated within CNT

  • KIM, Tae Hyung;KIM, Hu Sung;KIM, Yong-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.457-462
    • /
    • 2017
  • A linear carbon chain with pure sp hybridization has been intensively studied for the application of its intrinsic electrical properties to electronic devices. Owing to the high chemical reactivity derived from its unsaturated bond, encapsulation by carbon nanotubes (CNT) is provided as a promising method to stabilize the geometry of the linear carbon chain. Although the influence of CNT on the carbon chain has extensively been studied in terms of both electronic structure and geometries, the electron transport properties has not been discussed yet. In this regard, we provide the systematic atomic-scale analyses of the properties of the linear carbon chain within CNT based on a computational approach combining density-functional theory (DFT) and matrix green function (MGF) method. Based on the DFT calculations, the influence of CNT on electronic structures of the linear carbon chain is provided as well as its electrical origin. Via MGF calculations, we also identify the electron transport properties of the carbon chain - CNT complex.

  • PDF

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.