• 제목/요약/키워드: carbon shell

검색결과 302건 처리시간 0.029초

저압 급수가열기 추기노즐 주변 동체의 감육 완화에 관한 연구 (A Study on the Relief of Shell Wall Thinning around the Extraction Nozzle of Low Pressure Feedwater Heater)

  • 서혁기;박상훈;김형준;김경훈;황경모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2631-2636
    • /
    • 2008
  • The most components and piping of the secondary side of domestic nuclear power plants were manufactured carbon-steel and low-alloy steel. Flow accelerated corrosion leads to wall thinning (metal loss) of carbon steel components and piping exposed to the flowing water or wet steam of high temperature, pressure, and velocity. The feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which increases as operating time progress. Several nuclear power plants in Korea have also experienced wall thinning damage in the shell wall around the impingement baffle. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the experimental results based on down-scaled experimental facility. The experiments were performed based on several types of impingement baffle plates which are installed in low pressure feedwater heater.

  • PDF

Size dependent dynamic bending nonlocal response of armchair and chiral SWCNTs based on Flügge model

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.451-459
    • /
    • 2022
  • In present study, the nonlocal Flügge shell model based is utilized to investigate the vibration characteristics of armchair and chiral single-walled carbon nanotubes with impact of small-scale effect subjected to two boundary supports. The wave propagation approach is employed to determine eigen frequencies for armchair and chiral tubes. The fundamental frequencies scrutinized with assorted aspect ratios by varying the bending rigidity. The raised in value of nonlocal parameter reduces the corresponding fundamental frequency. It is investigated with higher aspect ratio, the boundary conditions have a momentous influence on vibration of CNT. It is concluded that frequencies would increase by increasing of the bending rigidity. Solutions of the frequency equation have determined by writing in MATLAB coding.

축압축하중을 받는 복합적층원통셸의 좌굴해석 (Buckling Analysis of laminated composite Cylindrical shells under Axial Compression)

  • 이종선
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.36-41
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

축압추하중을 받는 복합재료원통셸의 좌굴 (Buckling of Laminated Composite Cylindrical Shells under Axial Compression)

  • 원종진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.112-116
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

한국 연안 양식패류 패각 재활용을 통한 탄소수지 추정 (리뷰) (Estimation of Carbon Flux caused by the shell re-treatment at coastal shellfish aquaculture fields in Korea (Review))

  • 박영철;유재원;최근형;이창근;김혜정
    • 한국습지학회지
    • /
    • 제25권1호
    • /
    • pp.1-13
    • /
    • 2023
  • 연안의 양식 어장에서 식량자원으로 주로 생산되는 양식 패류는 성장에 따라 탄소가 저장된 패각을 형성한다. 수확된 패류를 식량자원으로 사용하고 남겨지게 되는 패각 부분을 탄소저장기능이 있는 방법으로 재활용할 경우, 탄소수지 개선 효과가 있다는 것이 여러 연구를 통해 보고되었다. 본 연구에서는 해양 패류의 개체성장에 따른 패각 내 이산화탄소의 생성과 저장에 대한 기작을 분석하였고 자연 패류 및 양식 패류의 생산성 향상을 통하여 일반적으로 얻어지는 탄소수지 추정에 대하여 고찰하였다. 또한 양식 패류 생산의 부산물로 얻어지는 패각의 재활용방안에 대하여 분석하였으며 마지막으로 탄소저장 기능성을 가진 재활용 방법이 활용될 경우에 대한 탄소수지를 추정함으로써 온실가스 감축에 대한 잠재효과를 고찰하였다.

Stable Isotope Profiles of the Fossil Mollusks from Marginal Marine Environment: Is Carbon from the Seasonal Methanogenesis?

  • Khim, Boo-Keun;Bock, Kathy-W.;Krantz, David-E.
    • Journal of the korean society of oceanography
    • /
    • 제32권2호
    • /
    • pp.63-68
    • /
    • 1997
  • Stable isotope profiles with fine-scale resolution were constructed from the fossil mollusk shells, Mercernaria mercernaria, obtained from the late Pleistocene transgressive deposits of Gomez Pit, Virginia, USA. Incremental sampling were made along the axis of maximum growth to provide high-resolution ${\delta}^{18}$O and ${\delta}^{13}$C records. The ${\delta}^{18}$O shell profiles exhibit a series of pronounced cycles in the overall amplitude, corresponding to strong seasonal variations in temperature, which is apparently positive environmental variable. Contrasts between the patterns of ${\delta}^{18}$O and ${\delta}^{13}$C profiles reflect the relationship influencing the seasonal carbon cycling in the shallow marine environment. Positive anomalies of the ${\delta}^{13}$C values during the summer were observed to be out of phase with the ${\delta}^{18}$O profile. Such relatively heavier carbon source may be alternated due to seasonal methanogenesis during the summer. A hypothesized methane-based system may be operated in the shallow and marginal marine environment, resulting in a ${\delta}^{13}$C enriched bicarbonate pool, in which the heavier isotope seems to be incorporated to the shell carbonate.

  • PDF

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Load transfer and energy absorption in transversely compressed multi-walled carbon nanotubes

  • Chen, Xiaoming;Ke, Changhong
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.273-286
    • /
    • 2017
  • We present a simple and easy-to-implement lumped stiffness model to elucidate the load transfer mechanism among all individual tube shells and intertube van der Waals (vdW) interactions in transversely compressed multi-walled carbon nanotubes (CNTs). Our model essentially enables theoretical predictions to be made of the relevant transverse mechanical behaviors of multi-walled tubes based on the transverse stiffness properties of single-walled tubes. We demonstrate the validity and accuracy of our model and theoretical predictions through a quantitative study of the transverse deformability of double- and triple-walled CNTs by utilizing our recently reported nanomechanical measurement data. Using the lumped stiffness model, we further evaluate the contribution of each individual tube shell and intertube vdW interaction to the strain energy absorption in the whole tube. Our results show that the innermost tube shell absorbs more strain energy than any other individual tube shells and intertube vdW interactions. Nanotubes of smaller number of walls and outer diameters are found to possess higher strain energy absorption capacities on both a per-volume and a per-weight basis. The proposed model and findings on the load transfer and the energy absorption in multi-walled CNTs directly contribute to a better understanding of their structural and mechanical properties and applications, and are also useful to study the transverse mechanical properties of other one-dimensional tubular nanostructures (e.g., boron nitride nanotubes).

Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment

  • Alighardashi, Abolghasem;Pakan, Mahyar;Jamshidi, Shervin;Shariati, Farshid Pajoum
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.517-528
    • /
    • 2017
  • This study evaluates the performance of membrane bioreactor (MBR) coupled with a modified walnut shell granular activated carbon (WSGAC) for tannery wastewater treatment. For this purpose, a pilot with overall volume of 80L and 12 hours hydraulic retention time (HRT) is operated in three scenarios. Here, the chemical oxidation demand (COD) of wastewater is reduced more than 98% in both C:N ratios of 13 (S1) and 6.5 (S2). This performance also remains intact when alkalinity depletes and pH reduces below 6 (S3). The ammonium removal ranges between 99% (S2) and 70% (S3). The reliability of system in different operating conditions is due to high solids retention time and larger flocs formation in MBR. The average breakthrough periods of WSGAC are determined between 15 minutes (S2) and 25 minutes (S1). In this period, the overall nitrate removal of MBR-WSGAC exceeds 95%. It is also realized that adding no chemicals for alkalinity stabilization and consequently pH reduction of MBR effluent (S3) can slightly lengthen the breakthrough from 15 to 20 minutes. Consequently, MBR can successfully remove the organic content of tannery wastewater even in adverse operational conditions and provide proper influent for WSGAC.

규산염탄소항성의 먼지층 모형 (MODEL DUST ENVELOPES AROUND SILICATE CARBON STARS)

  • 서경원
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권1호
    • /
    • pp.11-18
    • /
    • 2006
  • 비정질규산염과 비정질탄소 먼지입자들이 혼합된 불투명계수를 사용하여. 규산염탄소항성의 구형대칭 먼지층에 대한 복사전달 모형계산을 진행하였다. 계산결과들을 적외선 관측자료와 자세히 비교하여 최적의 모형 계수들을 얻어내었고 규산염탄소항성과 그 먼지층의 물리적,화학적 구조에 대한 해석에 적용하였다. 이 연구에 사용된 4개의 항성들은 먼지충의 화학성분이 변하는 과도기의 특징들을 다양하게 나타내었다. 단순히 규산염으로 이루어져 있지만 항성 표면으로부터 많이 떨어져 있는 먼지층은 홑별로서의 과도기 규산염탄소항성의 전형적인 모습이다. 그러나 쌍성일 경우 전시대의 규산염과 이후의 탄소 먼지입자들이 공존하는 독특한 특징을 보일 수 있다.