• Title/Summary/Keyword: carbon sheet

Search Result 596, Processing Time 0.024 seconds

A Study on Carbon Fiber Sheet Rehabilitation of Reinforced High Strength Concrete Beams (고강도 RC보의 탄소섬유쉬트 보강에 대한 연구)

  • 김종효;곽계환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.450-455
    • /
    • 1997
  • In recent years the research and development about the new material proceeds rapidly and actively in building industry. We are concerned with high-strength concrete as a new material. As the building structure becomes bigger, higher and more specialized, so does the demand of material and member with high strength for building expands greatly. In the future, we will quite need to research repair and rehabilitation to make high strength concrete structural building for our safe. So, I did an study on carbon fiber sheet rehabilitation(CFSR) of reinforced high strength concrete beams. The carbon fiber reinforced plastic(CFRP) bonding method is widely used for reinforcing the existing concrete structure among the various methods. The test results indicate that CFS is very effective for strengthening the damaged beams and controlling deflections of the repaired beams. When carbon fiber sheet rehabilitation of reinforced high strength concrete beams happened diagonal crack, the increase in the number of CFS layer didn't effect the increase in strength of beams. Also, by changing the CFS stick position gave diversified ultimate load in CFSR beams.

  • PDF

Effect of Cold Reduction Ratio on Spheroidization Rate of High Carbon Steel Sheet (고탄소강 열연판재의 냉간압하율에 따른 구상화 속도)

  • Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.543-546
    • /
    • 2008
  • In the present study, the effect of cold reduction ratio on the spherodization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $800^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ for 5 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure. Cold rolling was conducted on the sheets of fine pearlite by reduction ratios of 20, 30, and 40 % and heat treatment for spheroidization was carried out at $720^{\circ}C$ for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

An Experimental Study of Reinforced Concrete Columns Strengthened by Carbon Fiber Sheet (탄소섬유시트를 이용하여 보강된 철근콘크리트 기둥의 구조성능에 관한 실험연구)

  • Park, Jung-Woo;Lee, Kyoung-Hun;Hong, Won-Kee;Kim, Hee-Cheul
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.159-167
    • /
    • 2006
  • Every structure has the expected life span of its own and it has to be rebuilt. New buildings were preferred and put value a quantitative spread of apartment houses because of the rapid growth of national economy. Therefore, the apartment houses were not taken into consideration about maintenances. Carbon fiber sheet is widely used to strengthen old structural members but it is very rarely applied to a construction field for apartment houses. The purpose of this study is to develop effective strengthening methods for reinforced concrete columns using carbon fiber sheets. Eight reinforced concrete column specimens confined by carbon fiber sheet of uniaxial direction were tested using 10,000kN universal testing machine (UTM).

  • PDF

Fatique Analysis of RC Beams Strengthened by Steel Plate or Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 철근콘크리트 보의 피로해석)

  • Sim, Jong-Sung;Hwang, Eui-Seung;Bae, In-Hwan;Jang, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.703-708
    • /
    • 1997
  • In this study, the fatigue tests are performed on simply-supported R/C beams strengthened with steel plate and CFS (Carbon fiber sheet). Analysis results by Weibull distribution are compared with the test data. The unknown Weibull distribution parameters are estimated based on observations recorded in fatigue test. Safety factors for the number of cycles and the stress level are obtained. S-N-P curves are also generated from these testes and probabilities of failure.

  • PDF

The Prediction of Fatigue Behavior using Cyclic Creep Concept of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 R/C보의 반복크리프 개념을 적용한 피로거동예측)

  • 심종성;문도영;박경동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.555-560
    • /
    • 2003
  • Fatigue strength of concrete is ususlly presented by the Wohler Curve. But, new dimension T(time) from the view point of cyclic creep concept should be considerd. This paper presented four variable F-N-T-R relationship, this four variable relationship simultaneously accounts for the time effect and the effect of load rate. And analytical models are presented to predict fatigue strength of R/C beam strengthened with steel plate and carbon fiber sheet. Also, the correlation between the ratio of stress and the fatigue life was investigated.

  • PDF

Spinning Multi Walled Carbon Nanotubes and Flexible Transparent Sheet Film

  • Jang, Hun-Sik;Lee, Seok-Cheol;Kim, Ho-Jong;Jeong, In-Hyeon;Park, Jong-Seo;Nam, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.200-200
    • /
    • 2012
  • We investigated a flexible transparent film using the spinning multi-walled carbon nanotubes (MWCNTs). Spin-capable MWCNTs on iron catalyzed on a SiO2 wafer was grown by chemical vapor deposition, which was performed at $780^{\circ}C$ using C2H2 and H2 gas. The average diameter and length of MWCNTs grown on the substrate were ~15 nm and $250{\sim}300{\mu}m$, respectively. The MWCNT sheets were produced by continuously pulling out from well-aligned MWCNTs on a substrate. The MWCNT sheet films were produced simply by direct coating on the flexible film or grass. The thickness of sheet film was remarkably decreased by alcohol spraying on the surface of sheet. The alcohol splay increased transmittance and decreased electrical resistance of MWCNT sheet films. Single and double sheets were produced with sheet resistance of ~699 and ${\sim}349{\Omega}/sq$, respectively, transmittance of 81~85 % and 67~72%, respectively. The MWCNT sheet films were heated through the application of direct current power. The flexible transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, MWCNT yarns were prepared by spinning a bundle of MWCNTs from vertically super-aligned MWCNTs on a substrate, and field emission from the tip and side of the yarns was induced in a scanning electron microscope. We found that the field emission behavior from the tip of the yarn was better than the field emission from the side. The field emission turn-on voltages from the tip and side of MWCNT yarns were 1.6 and $1.7V/{\mu}m$, respectively, after the yarn was subjected to an aging process. Both the configuration of the tip end and the body of the yarn were changed remarkably during the field emission. We also performed the field emission of the sheet films. The sheet films showed the turn on voltage of ${\sim}1.45V/{\mu}m$ during the field emission.

  • PDF

Electromagnetic Interference Shielding Effectiveness of Hybrid Conductive Fabrics (하이브리드 전도성 직조섬유의 전자파 차폐효과)

  • Han, Gil-Young;Kim, Ki-Yeol;Yun, Tae-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • This study investigated electromagnetic interference (EMI) shielding effectiveness (SE) of hybrid conductive fabrics. The coaxial transmission line method was used to measure the EMI Shielding effectiveness of the conductive fabrics. We designed and constructed a measuring system, consisting of a network analyzer and a device that serves as a sample holder and at the same time as a transmission medium of incident electromagnetic waves. The measurements of SE were carried out in a frequency range from 100 MHz to 2 GHz. The results of the EMI shielding experiments showed that the maximum electromagnetic shielding effectiveness (EMSE) values of sandwich type C/A/C (carbon fiber sheet/aluminum foil tape/carbon fiber sheet) and C/Ni/C (carbon fiber sheet/magnetic shielding foil/carbon fiber sheet) samples were 55 dB and 113 dB, respectively, at a frequency of 1.9 GHz.

Particle collection characteristics of carbon fiber sheet discharge electrode by particle size and application to air cleaner (탄소섬유 시트 방전극의 입자 크기 별 집진 특성 및 공기청정기로의 응용)

  • shin, Dongho;Woo, Chang Gyu;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.81-88
    • /
    • 2018
  • The market for improving the indoor air quality is continuously increasing, and air cleaners are the representative products. As interest in indoor air quality increases, so are the ultrafine particle which are harmful to the human body. Despite its many advantages, electrostatic precipitators are less used in indoor air due to ozone production. In this study, the carbon fiber sheet was applied to the discharge electrode and compared with the conventional tungsten wire discharge electrode. The particle collection efficiency and the amount of ozone generation were measured for 10-100 nm particles. Furthermore, it was applied to commercial air purifier with electrostatic precipitator to compare particle removal performance. The carbon fiber sheet type discharge electrode generates a small amount of ozone, and thus it can be applied to improve indoor air quality.

A Study on the Direct Synthesis of TaC by Cast-bonding (주조접합법에 의한 TaC 직접합성에 관한 연구)

  • Park, Heung-Il;Lee, Sung-Youl
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.371-378
    • /
    • 1997
  • The study for direct synthesis of TaC carbide which was a reaction product of tantalum and carbon in the cast iron was performed. Cast iron which has hypo-eutectic composition was cast bonded in the metal mold with tantalum thin sheet of thickness of $100{\mu}m$. The contents of carbon and silicon of cast iron matrix was controlled to have constant carbon equivalent of 3.6. The chracteristics of microstructure and the formation mechanism of TaC carbide in the interfacial reaction layer in the cast iron/tantalum thin sheet heat treated isothermally at $950^{\circ}C$ for various time were examined. TaC carbide reaction layer was grown to the dendritic morphology in the cast iron/tantalum thin sheet interface by the isothermal heat treatment. The composition of TaC carbide was 48.5 at.% $Ti{\sim}48.6$ at.% C-2.8 at.% Fe. The hardness of reaction layer was MHV $1100{\sim}1200$. The thickness of reaction layer linearly increased with increasing the total content of carbon in the cast iron matrix and isothermal heat treating time. The growth constant for TaC reaction layer was proportional to the log[C] of the matrix. The formation mechanism of TaC reaction layer at the interface of cast iron/tantalum thin sheet was proved to be the interfacial reaction.

  • PDF

Flexural Capacity and Non-Linear Characteristic Evaluation of Circular Column Confined by Carbon Sheet Tube (카본시트튜브로 구속된 원형기둥의 휨내력 및 비선형 특성에 대한 연구)

  • Lee, Kyoung Hun;Yoo, Youn Jong;Kim, Hee Cheul;Hong, Won Kee;Lee, Young Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2007
  • Six full scale column specimens have been tested under the constant axial and cyclic lateral load. An equivalent stress block parameter was used to estimate flexural capacity of columns confined by carbon sheet tube. Through the non-linear regression analysis, behaviors of CFCST(Concrete Filled Carbon Sheet Tube) columns under the cyclic lateral load were estimated and compared with test results.