• Title/Summary/Keyword: carbon sheet

Search Result 596, Processing Time 0.023 seconds

The Flexural Strengthening Effect of I-Shape PFRP Member Using Carbon Fiber Sheet (탄소섬유시트를 이용한 I형 PFRP 부재의 휨보강 효과)

  • Lee, Young-Geun;Kim, Sun-Hee;Lee, Kang-Yeon;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.

Relationship between fatigue resistance and fracture behavior of the carbon fiber sheet and carbon fiber strand sheet reinforced RC slabs (Carbon fiber sheet 및 carbon fiber strand sheet 접착보강한 RC 상판의 내피로성과 파괴거동과의 상관관계)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho;Kim, Do Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.294-298
    • /
    • 2015
  • According to the results of "Highway Bridges Long Life Repair Plan." The most serious damage to RC slabs is caused by fatigue deterioration, which results from the driving loads of large-sized vehicles, and aging of materials. In response to this, adhesion reinforcement using carbon fiber sheet is being adopted. In addition, carbon fiber strand sheet that holds the same material characteristics as CFS, but has superior workability, has been developed as a new reinforcement material. However, almost no studies have been conducted on CFSS in relation to fatigue resistance evaluation through fatigue tests under running wheel loads, with the exception of a few by some organizations. Therefore, in this study, specimens with front CFS adhesion reinforcement on the bottom surface of the RC slab and specimens with grid-type CFSS reinforcement were manufactured. Then, fatigue tests under running wheel loads were conducted, and thus fatigue resistance was evaluated using the specimens.

Study of Parameters on the Electrochemical Properties of Carbon-PTFE Electrode for Electric Double Layer Capacitor (EDLC용 Carbon-PTFE 전극의 전기화학적 특성에 미치는 변수 연구)

  • Kim, Ick-Jun;Yang, Sun-Hye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.355-356
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black: PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 carbon black : PTFE = 80 : 15 : 5 wt%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between 0.5 $mA/cm^2$ ~ 100 $mA/cm^2$ current density and the lowest ESR.

  • PDF

Electrochemical Performance of Carbon-PTFE Electrode with High Capacitance and Density for EDLC (EDLC용 고용량, 고밀도 Carbon-PTFE 전극의 전기화학적 특성)

  • Kim, Ick-Jun;Jeon, Min-Je;Yang, Sun-Hye;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.541-542
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP 20 : carbon black : PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP 20 : carbon black : PTFE = 80 : 15 : 5 wt.%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between $0.5mA/cm^2{\sim}100mA/cm^2$ current density and the lowest ESR.

  • PDF

Effect of Initial Texture on the Development of Goss Orientation of Asymmetrically Rolled Steel Sheets (비대칭 압연한 강판의 GOSS 방위 발달에 미치는 초기 집합조직의 영향)

  • Lee, C.W.;Jeong, H.T.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The Goss texture component of {110}<001> is well known as one of the best texture components to improve the magnetic properties of electrical steel sheets. The small amount of the Goss texture component is obtained at the surface of the steel sheet by shear deformation due to friction between the steel sheet and the roll during conventional symmetric rolling. This study aims to identify a method to obtain high intensity of the Goss texture component not only at the surface but in the whole layer of the steel sheet by shear deformation of asymmetric rolling. Low carbon steel sheets, which have different initial texture, were asymmetrically rolled by about 50%, 70%, and 80%. The pole figures of the top, center, and bottom layers of the initial and asymmetrically rolled low carbon steel sheets were measured by an X-ray diffractometer. Based on the measured pole figures of these samples, the intensities of the main texture components were analyzed for the initial and asymmetrically rolled low carbon steel sheets. As a result, the initial low carbon steel sheet with the γ-fiber component showed a higher intensity of the Goss texture component in the whole layer than the steel sheet with other texture components after asymmetric rolling.

Preparation and Electrochemical Performance of Carbon-PTFE Electrode for Electric Double Layer Capacitor (EDLC용 Carbon-PTFE 전극의 제조 및 전기화학적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.833-839
    • /
    • 2005
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black : $PTFE\;=\;95-X\;:\;X\;:\;5wt.\%$. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 : carton black $PTFE\;=\;80\;:\;15\;:\;5wt.\%$. These behaviors could be explained by the network structure of PTFE fibrils and conducting Paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with $15wt.\%$ of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black $CMC\;=\;70\;:\;30wt.\%$, has exhibited the best rate capability between $0.5\;mA/cm^2\~100\;mA/cm^2$ current density and the lowest ESR.

Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steel Sheets (저탄소강판을 이용한 굽힘 가공에서 발생하는 꺽임현상에 대한 발생 기구 해석)

  • Park, K.C.;Yoon, J.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.336-339
    • /
    • 2007
  • In order to investigate the cause of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was due to the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in $0.5{\sim}0.6t$ sheet in $15{\sim}20mm$ radius bending.

  • PDF

A Study on the Shear Capacity of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트(CFS)로 보강된 철근콘크리트 보의 전단내력에 관한 연구)

  • Gwon, Chul-Sung;Kim, Ha-Yong;Gwon, Woo-Hyun;Baek, Seung-Min;Kwak, Yoon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.259-262
    • /
    • 2005
  • This paper deals with the shear strengthening effect of RC beams strengthened with carbon fiber sheets. Fifteen strengthened RC beams(including control beam) were experimentally evaluated to determine improvements in shear strength. The major parmeters of experiment variables are fiber sheet strengthening ratios and strengthening methods of fiber sheet(I-S, I-W, U-S, U-W type). Reinforced concrete beams strengthened with carbon fiber sheets were tested under the combined control of load. Considering strengthening ratios and strengthening methods of fiber sheet, shear capacity and failure mode of test specimens were evaluated. The results show that shear capacity of beams strengthened with fiber sheet is about $28.82\%$ in IS type, $20.49\%$ in IW type, $26.04\%$ in US type, $28.70\%$ in UW type higher than the strength of control beam.

  • PDF

A Study on the Heat Performance of Single Layered Bubble Sheet Using Phothothermal Materials (광발열 소재를 활용한 1중 버블시트의 발열성능 검토)

  • Lee, Hyeon-Jik;Hu, Yun-Yao;Lee, Seung-Min;Han, Jun-Hui;Kin, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.223-224
    • /
    • 2023
  • This study compared the curing temperature of the bubble sheet and the photothermal insulation sheet incorporating carbon-based photothermal materials to reduce concrete curing time as a part of shortening construction period. As a result of the experiment, bubble sheet with photothermal material B is judged to be effective in shortening the curing time under hot environment.

  • PDF

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.