• 제목/요약/키워드: carbon segregation

검색결과 32건 처리시간 0.029초

A STUDY ON THE BEHAVIOR OF BORON DISTRIBUTION IN LOW CARBON STEEL BY PARTICLE TRACKING AUTORADIOGRAPHY

  • Mun, Dong-Jun;Shin, Eun-Joo;Koo, Yang-Mo
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The behavior of the non-equilibrium grain boundary segregation of boron in low carbon steel was studied through a particle tracking autoradiography. The behavior of the non-equilibrium grain boundary segregation of boron during continuous cooling was compared with the isothermal kinetics of the non-equilibrium grain boundary segregation of boron at the holding temperature using an effective time method. On the basis of the experiments, the cooling rate dependence of the non-equilibrium segregation of boron was explained using the time dependence of the non-equilibrium segregation of boron in low carbon steel. The experimental observations for the cooling rate dependence of the grain boundary segregation of boron are in good agreement with the time dependence of the grain boundary segregation of boron. The mechanisms of the non-equilibrium segregation of boron during cooling in low carbon steel are also discussed.

저탄소성 용접금속의 응고균열에 미치는 탄소함량의 영향 (The effect of carbon content on hot cracking of low carbon steel weld)

  • 정호신;엄동석
    • Journal of Welding and Joining
    • /
    • 제6권4호
    • /
    • pp.16-26
    • /
    • 1988
  • The effect of carbon content on hot cracking of welded carbon steel was investigated Eight steel plates whose carbon content range from 0.02 to 0.23 percent were welded by autogeous gas tungsten are process. Constant strain was applied to the hot crack test specimen under the strain rate of 0.15 mm per second during welding. The hot cracking susceptibility ws high in the rnage of 0.02-0.05 and 0.12-0.23 percent carbon contents. The critical carbon content immune to hot cracking is in the range from 0.07 to 0.12 percent carbon. By electron probe microanalyser, amanganese segregation was not seen significantly in the whole carbon range. But segregation of silicon was higher in the region of low carbon contents. However, sulphur was segregated remarkably in the region betwen 0.18 and 0.23 percent carbon by peritectic reaction. Very smal lamount of dnedritic structure was observed in the region from 0.02 to 0.05 percent carbon by peritectic reaction. Very small amount of dendritic structure was observed in the region from 0.02 to 0.05 percent carbon but the predominant solidification structure was smooth by cellular growth. The higher the carbon content is, the more the columnar dendritic structure was observed.

  • PDF

티타늄과 티타늄 알루니마이드 합금에서 황의 표면석출 (Surface Segregation of Sulfur in Ti and ti-Aluminide Alloys)

  • 이원식;이재희
    • 한국진공학회지
    • /
    • 제5권1호
    • /
    • pp.39-47
    • /
    • 1996
  • The segregation of S in electrotransport-purified polycrystaline $\alpha$-Ti and Ti-aluminide alloys has been studied by Auger electron spectroscopy(AES), Ion scattering spectroscopy(ISS) and Secondary ion mass spectrometry(SIMS) in the temperature range extending from 20 to $1000^{\circ}C$. The chemisorbed oxygen and carbon on Ti were observed to disappear at T>$400^{\circ}C$ after which the S signal increased to levels approaching 0.5 monolayer. At lower temperatures the presence of the surface oxygen and carbon appeared to inhibit the segregation, presumably because there were no available surfaces sites for the S emerging from the bulk. The activation energy for the S segregation in pure polycrystaline Ti was determined to be 16.7 kcal/mol, which, when compared to S segretation from single-crystal Ti, is quite small and suggests grain boundary or defect diffusion segregation kinetics. In the Ti-aluminide alloys, the presence of Al appeared to enhance the retention of surface oxygen which, in turn, substantially reduced the S segretation. The $\gamma$ alloy, with its high Al content, exhibited the greatest retention of surface oxygen and the smallest quantity of the S segregation(T$\simeq1000^{\circ}C$).

  • PDF

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

이음매 없는 304L 스테인리스강관의 부식특성에 미치는 열처리의 영향 (Effect of Heat Treatment on the Corrosion Properties of Seamless 304L Stainless Steel Pipe)

  • 김기태;엄상빈;김영식
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.305-316
    • /
    • 2017
  • Austenitic stainless steels have been widely used for various systems of nuclear power plants. Among these stainless steels, small pipes with diameter less than 14 inch have been produced in the form of seamless pipe. Annealing and cooling process during the manufacturing process can affect corrosion properties of seamless stainless steels. Therefore, 12 inch-diameter of as-received 304L stainless steel pipe was annealed and aged in this study. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. U-bend method in an autoclave was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ or 40% NaOH solution at $340^{\circ}C$. As-received specimen showed relatively high degree of sensitization and intergranular corrosion rate. Carbon segregation was also observed near grain boundaries. Annealing treatment could give the dissolution of segregated carbon into the matrix. Aging treatment could induce segregation of carbon and finally form carbides. Microstructural analysis confirmed that high intergranular corrosion rate of the as-received seamless pipe was due to micro-galvanic corrosion between carbon segregation and grains.

Effect of Carbon on the Coefficient of Thermal Expansion of As-Cast Fe-3 0 wt.%Ni-12.5wt.% Co-xC Invar Alloys

  • 김봉서;유경재;김병걸;이희웅
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.247-247
    • /
    • 1999
  • The segregation (distribution) of nickel and the composition of its constituents influence the low thermal expansion characteristics (Invar effect) in Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy. The change of coefficient of the thermal expansion and magnetic properties were studied as an aspect of carbon addition causing the segregation of Ni in primary austenite of as-cast Fe-30 wt.% Ni-12.5 wt.% Co Invar alloy. The coefficient of thermal expansion of Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy showed its lowest value at 0.08 wt.% carbon, increased with increasing carbon content in the range of 0.08-1.0 wt.%C, kept constant at 1.0-2.0 wt.%C and decreased at carbon higher than 2.0 wt.%. The effective distribution of the coefficient of nickel in as-cast Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy increased with increasing carbon content. The volume fraction of they phase of Fe-30 wt.% Ni-12.5 wt.% Co-xC alloy increased with increasing carbon content. The microstructure of Fe-30 wt.% Ni-12.5 wt.% Co-xC alloy changed with the carbon content was independent of the coefficient of thermal expansion. The Curie temperature changed linearly with the carbon content and was similar to the change of the coefficient of thermal expansion. Moreover, the coefficient of thermal expansion decreased when the ratio of saturation magnetization to Curie temperature ($\sigma_s/T_c$) increased, decreasing the Curie temperature and showed a specific relationship with the magnetic properties of the Fe-30 wt.% Ni-12.5 wt.% Co-xCInvar alloy.

EMBR을 이용한 연속주조공정에서 난류 유동, 상변화 및 매크로 편석에 대한 연구 (Coupled Turbulent Flow, Heat and Solute Transport in Continuous Casting Processes with EMBR)

  • 강관구;유홍선;허남건
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1195-1200
    • /
    • 2004
  • A fully coupled fluid flow, heat, and solute transport model was developed to investigate turbulent flow, solidification, and macrosegregation in a continuous casting process of steel slab with EMBR. Transport equations of mass, momentum, energy, and species for a binary iron-carbon alloy system were solved using a continuum model. The electromagnetic field was described by the Maxwell equations. A finite-volume method was employed to solve the conservation equations associated with appropriate boundary conditions. The effects of intensity of magnetic field and carbon segregation were investigated. The electromagnetic field reduces the velocity of molten flow in the mold and an increase in the percentage of C in steel results in a decrease of carbon segregation ratio.

  • PDF

개량 12Cr-1Mo강에서 탄소 함량 및 응고속도에 따른 응고 조직 형성 거동 (Solidification Microstructures with Carbon Contents and Solidification Rates in Modified 12Cr-lMo Steels)

  • 엄칠룡;이재현;허성강;지병하;류석현
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.101-109
    • /
    • 2004
  • The influences of solidification rates and carbon contents on the formation of the $\delta$-ferrite were studied by directional solidification in modified 12%Cr-l %Mo steels. Directional solidification experimental results showed that solidification microstructure depended on solidification rate and carbon content and chromium equivalent. The length of the mushy zone increased and the dendrite arm spacings decreased as the solidification rate increased. The volume fraction of the 8-ferrite decreased with increasing the solidification rate and carbon content. The volume fraction of the ferrite showed much higher at low solidification rates with planar and cellular interfaces than that at high solidification rates with dendritic interface. It is expected that macro-segregation of C causes lower C content at the lower solidification fraction in the directionally solidified sample, where lower C results in higher volume fraction of the ferrite. In order to estimate solidification microstructure in modified 12Cr-l%Mo steels, various solidification conditions, such as solidification rate, cooling rate, segregation, alloy composition, should be considered.

고Mn강의 소성에 따른 미세조직및 Texture 변화에 관한연구 (The development of deformation microstructures and textures in high Mn steels)

  • 김택남;김종옥
    • 자연과학논문집
    • /
    • 제7권
    • /
    • pp.83-90
    • /
    • 1995
  • 탄소함량이 다른 두 Hadfield's강의 (고Mn강) 소성에 관한 연구를, 냉간압연시 나타나는 금속미세조직, texture등으로 조사하였다. Low carbon Hadfield's steel (LCHS, 0.65 wt. % C)에서는 적층결함, 쌍정및 brass type shear bands가 냉간압연시 나타나고, 이때 쌍정은 Intrinsic적층결함이 차곡차곡 쌓여서 나타나는것으로 생각된다. Texture 는 70-30 황동과 초기에는 비슷하나, 40% 이상의 변형에서는 마르텐사이트 상변화에 의해서 이상 texture가 나타난다. 한편 high carbon Hadfield's steel (HCHS, 1.35 wt. % C)에서는 전위엉킴, 쌍정및 copper and brass type shear bands가 소성 변형시 나타난다. Texture 는 70-30 황동과 비슷하고 이상 texture는 나타나지않고있다. 이러한 사실은 HCHS에서 마르텐사이트 상변화가 나타나지 않는것과 또 탄소원자가 편석되지 않는것과 잘일치하고 있다. LCHS와 HCHS사이의 미세조직과 texture의 변화에 많은 차이점을 보일지라도, 적층결함에너지의 차이는 매우작고 약 ($2 mJm^-2$), 탄소편석이 오직 LCHS에서만 일어나고 있다. 따라서 탄소와 같은 작은 원자의 편석이 미세조직 뿐만아니라, texture에 영향을 미치는 것을 생각 할 수 있다. 이러한 탄소의 편석은 LCHS에서 마르텐사이트 상변화와도 관계가 깊다.

  • PDF

Novel Synthesis and Nanocharacterization of Graphene and Related 2D Nanomaterials Formed by Surface Segregation

  • Fujita, Daisuke
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.60-60
    • /
    • 2015
  • Nanosheets of graphene and related 2D materials have attracted much attention due to excellent physical, chemical and mechanical properties. Single-layer graphene (SLG) was first synthesized by Blakely et al in 1974 [1]. Following his achievements, we initiated the growth and characterization of graphene and h-BN on metal substrates using surface segregation and precipitation in 1980s [2,3]. There are three important steps for nanosheet growth; surface segregation of dopants, surface reaction for monolayer phase, and subsequent 3-D growth (surface precipitation). Surface phase transition was clearly demonstrated on C-doped Ni(111) by in situ XPS at elevated temperatures [4]. The growth mode was clarified by inelastic background analysis [5]. The surface segregation approach has been applied to C-doped Pt(111) and Pd(111), and controllable growth of SLG has been demonstrated successfully [6]. Recently we proposed a promising method for producing SLG fully covering an entire substrate using Ni films deposited on graphite substrates [7]. A universal method for layer counting has been proposed [8]. In this paper, we will focus on the effect of competitive surface-site occupation between carbon and other surface-active impurities on the graphene growth. It is known that S is a typical impurity of metals and the most surface-active element. The surface sites shall be occupied by S through surface segregation. In the case of Ni(110), it is confirmed by AES and STM that the available surface sites is nearly occupied by S with a centered $2{\times}2$ arrangement. When Ni(110) is doped with C, surface segregation of C may be interfered by surface active elements like S. In this case, nanoscopic characterization has discovered a preferred directional growth of SLG, exhibiting a square-like shape (Fig. 1). Also the detailed characterization methodologies for graphene and h-BN nanosheets, including AFM, STM, KPFM, AES, HIM and XPS shall be discussed.

  • PDF