• Title/Summary/Keyword: carbon quality

Search Result 1,657, Processing Time 0.034 seconds

Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia (탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향)

  • Youn-Ah Kim;Jung Choi;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.505-517
    • /
    • 2023
  • This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.

The Impact of Ownership Structure and Audit Quality on Carbon Emission Disclosure: An Empirical Study from Indonesia

  • TARIGAN, Bahagia;PRAMONO, Agus Joko;RUSMIN, Rusmin;ASTAMI, Emita Wahyu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.4
    • /
    • pp.251-259
    • /
    • 2022
  • This study investigates the impact of ownership structures and audit quality on carbon emission disclosure. It also examines how audit quality affects the relationship between ownership structures and carbon emission disclosure. This research includes 106 standalone sustainability reports from non-financial companies that were listed on the Indonesia Stock Exchange (IDX) between 2015 and 2018. Our findings show that family and concentrated ownerships convey less information about carbon emissions. Our results fail to demonstrate that disclosure of carbon emissions could be a corporation's approach to respond to stakeholder pressure and public visibility and to provide legitimacy for its existence. We also find a positive and significant association between high-quality (Big4) auditors and carbon emission performance. Our further result suggests that Big4 auditors seem to compromise their high standard quality on auditing family and concentrated ownership firms. They fail to influence their family and concentrated ownership clients to be socially responsible. Policymakers should support the existence of Big4 auditors as a driver of carbon emission performance. Top management should be proactive to tackle carbon emission issues by adopting stakeholder-driven mechanisms and establishing legitimacy with society. Nevertheless, the involvement of family and highly concentrated shareholders in decision-making processes and information disclosure should not be encouraged.

A Study on the Metrial Charcterisitics of Material Quality and Milling of Axle Materials for a Automobile (자동차 차축 소재의 금속적 특징 및 밀링 절삭 특성 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value, hardness etc. Test materials are used in the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1. In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite + pearlite structure. 2. Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth on cut is constant. 4. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when cutting speed and depth of cut is constant.

  • PDF

Carbon Assimilation and Respiration of Daphnia magna with Varying Algal Food Quality

  • Park, Sang-Kyu;Goldman Charles R.
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.433-438
    • /
    • 2006
  • To elucidate the mechanisms by which algal food quality affect Daphnia growths, we measured carbon incorporation rates and respiration rates of Daphnia magna with Cryptomonad Rhodomonas minuta, green algae Scenedesmus acutus and cyanobacteria Synechococcus sp. with varying physiological states as food. Carbon assimilation rates were high with R. minuta and S. acutus and low with Synechococcus sp. showing a similar pattern to the growth rate pattern. There was no clear difference among respiration rates of three algal species. Carbon assimilation rates and respiration rates of D. magna appeared to be independent on Molar C:P ratios in algal foods. Carbon growth efficiencies (incorporated carbon per assimilated carbon amount) were lower when D. magna fed with Synechococcus sp. than fed with R. minuta or S. acutus. Analysis of variance results show that carbon assimilation rates which were sum of incorporation and respiration rates and carbon growth efficiencies were only dependant on species affiliation. Overall, our results showed that algal species with varying ${\omega}3$ polyunsaturated fatty acid content led different carbon incorporation rates and overall carbon assimilation rates of D. magna.

Low Temperature Growth of High-Quality Carbon Nanotubes by Local Surface Joule Heating without Heating Damage to Substrate

  • Heo, Sung-Taek;Lee, Dong-Gu
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.230-233
    • /
    • 2009
  • In this study, a low temperature growth of high-quality carbon nanotubes on glass substrate using a local surface heating without heating damage to substrate was tried and characterized. The local joule heating was induced to only Ni/Ti metal film on glass substrate by applying voltage to the film. It was estimated that local surface joule heating method could heat the metal surface locally up to around $1200^{\circ}C$ by voltage control. We could successfully obtain high-quality carbon nanotubes grown at $300^{\circ}C$ by applying 125 V for joule heating as same as carbon nanotubes grown at $900^{\circ}C$.

A Study on the Machining Charcterisitics of Milling of cylinderical Rod Materials for Passenger Car (승용차용 CYLINDER ROD 소재의 밀링 적삭 특성 연구)

  • 채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.143-148
    • /
    • 1996
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value hardness etcs. Test materials are used the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1.In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite+pearlite structure. 2.Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3.Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth of cut is constant. 4.Cutting force is smaller to the tempered carbon steel and smaller non-tempered carbon steel than tempered carbon steel when cutting conditions

  • PDF

Quality Comparison of Activated Carbon Produced From Oil Palm Fronds by Chemical Activation Using Sodium Carbonate versus Sodium Chloride

  • MAULINA, Seri;HANDIKA, Gewa;Irvan, Irvan;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.503-512
    • /
    • 2020
  • Using Na2CO3 versus NaCl as chemical activator, we compared the quality of activated carbon produced from oil palm fronds as raw material. These activators were selected for comparison because both are readily available and are environmentally friendly. In the manufacturing, we used Indonesian National Standard (SNI 06-3730-1995) parameters. For the quality comparison, we determined activated-carbon yield, moisture, ash, volatiles, and fixed-carbon contents; and adsorption capacity of iodine. The best characteristics, assessed by morphological surface analysis and Fourier transform infrared (FTIR) spectral analysis, were observed in the carbon activated by Na2CO3 at an activator concentration of 10% and carbonization temperature of 400 ℃. The results were as follows: activated-carbon yield, 84%; water content, 8.80%; ash content, 2.20%; volatiles content, 14.80%; fixed-carbon content, 68.60%; and adsorption capacity of iodine, 888.51 mg/g. Identification using the FTIR spectrophotometer showed the presence of the functional groups O-H, C=O, C=C, C-C, and C-H in the Na2CO3-activated carbon.

Change of Aboveground Carbon Storage in a Pinus rigida Stand in Gwangnung, Gyunggi-do, Korea (경기도(京畿道) 광릉(光陵) 리기다소나무임분(林分)의 지상부(地上部) 탄소저장량(炭素貯藏量) 변화(變化))

  • Kim, Choonsig;Jeong, Jin-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.774-780
    • /
    • 2001
  • Aboveground carbon storage and increment of a 31-year-old pitch pine (Pinus rigida) stand were measured for five years (1997~2001) in the Jungbu Forest Experiment Station, Gyeonggi-do, Korea. The carbon concentration in each component of aboveground and soil depth decreased in the order of needle>branch>stembark>stemwood>forest floor>0-15cm soil depth>15-30cm soil depth. The carbon storage except for root carbon was 140,600kgC/ha and the tree accounted for 61%, soil 31% and forest floor 8% of the stand carbon storage. Due to high tree mortality by Fusarium subglutinans infection and spring drought in 2001, carbon increment except for 2001 data was 3,233kgC/ha/yr and was in the order of stemwood>branch>stembark>needle. Carbon storage and increment were attributed to stand density and site quality. Carbon storage and increment were higher in the high site quality than in the lower site quality plot on similar tree density. Also, the high tree density site on similar site quality showed more carbon storage and increment compared with the lower tree density. The results suggest that site quality and tree density are a key factor determining carbon storage and increment in this pitch pine stand.

  • PDF

Validation of Adsorption Efficiency of Activated Carbons through Surface Morphological Characterization Using Scanning Electron Microscopy Technique

  • Malik, Ruchi;Mukherjee, Manisha;Swami, Aditya;Ramteke, Dilip S.;Sarin, Rajkamal
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • The studies on activated carbon prepared from walnut shell and groundnut shell were undertaken to ascertain the effect of initial state of precursor and activation process on the development of porosity in the resulting activated carbon. Walnut shell based carbon shows the presence of cellular pores while Groundnut shell based carbon shows fibrillar pore structure. The adsorption parameters, characterization of product and scanning electron microscopic studies carried out showed the presence of mainly Micro, Meso and Macro porosity in carbon prepared from Walnut shell while mainly micro porosity was observed in Groundnut shell based activated carbon. An interrelationship between the adsorption efficiency and porosity in terms of quality control parameters, for before and after activation, was validated through the scanning electron microscopic data.

  • PDF

Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.118-133
    • /
    • 2024
  • The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.