• 제목/요약/키워드: carbon precursor

검색결과 424건 처리시간 0.02초

생리활성지방산;그 대사와 기능 (Physiologically Active Fatty Acids their Metabolism and Function)

  • 녹산광
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.15-24
    • /
    • 1996
  • Essentiality was proposed in the field of lipid by Burr and Burr in 1929. When rats were raised on the fat-free diet, their growth retarded and their skin and tails showed the characteristic deficient symptoms, which were relieved by the addition of ${\omega}6(n-6)$ polyunsaturated fatty acids as linoleic(LA) and arachidonic(AA) acids to the basal diet. LA is dehydrogenated to ${\gamma}-linolenic$ acid(GLNA) by ${\Delta}6$ desaturase, then GLNA is 2 carbon chain elongated by elongase to $dihomo-{\gamma}-linolenic$ acid(DGLNA), which is desaturated by ${\Delta}5$ desaturase to AA. These acids are called LA family or ${\omega}6(n-6)$ polyunsaturated fatty acids(PUFA). ${\alpha}-Linolenic$ acid(ALNA) is converted through the series of desaturation and elongation steps to docosahexaenic acid(DHA) via eicosapentaenoic acid(EPA). These acids belong to ALNA family or ${\omega}3(n-3)$PUFA. Human who consume large amounts of EPA and DHA, which are present in fatty fish and fish oils, have increased levels of these two fatty acids in their plasma and tissue lipids at the expense of LA and AA. Alternately, vegetarians, whose intake of LA in high, have more elevated levels of LA and AA and lower levels of EPA and DHA in plasma lipids and in cell membranes than omnivores. AA and EPA are metabolized to substances called eicosanoids. Those derived form AA are known as prostanocids(prostaglandins and prostacyclins) of the 2-types and leukotrienes of the 4-series, whereas those derived from EPA are known as prostanoids of the 3-types and leukotrienes of the 5-series. DGLNA is a precursor of the 1-types of prostaglandins. The metabolites of AA and EPA have competitive functions. Ingestion of EPA from fish or fish oil replaces AA from membrane phospholipids in practically all cells. So this leads to a more physiological state characterized by the production of proatanoids and leukotrienes that have antithrombic, antichemotactic, antivasoconstrictive and antiinflammatory properties. It is evident that ${\omega}3$ fatty acids can affect a number of chronic diseases through eicosanoids alone.

Purification and Characterization of ${\beta}-Glucosidase$ from Penicillium verruculosum

  • Chun, Soon-Bai;Kim, Dong-Ho;Kim, Kang-Hwa;Chung, Ki-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권3호
    • /
    • pp.188-196
    • /
    • 1991
  • The ${\beta}-glucosidase$ was purified to homogeneity from the culture filtrate of P. verruculosum by column chromatography. The enzyme was a glycoprotein with a relative size of approximately 220 kDa with an isoelectric point of 4.8, which was composed of dimeric protein of 105 kDa. The enzyme was stable up to $60^{\circ}C$ and the presence of glycerol significantly increased its thermostability. The enzyme was found to hydrolyze both ${\beta}-aryl$ and ${\beta}-alkyl-glucosides$ in addition to ${\beta}-glucosyl$ glucose and catalyzed glucosyl transfer to cellobiose. The enzyme attacked laminarin in an exotype-like fashion. The apparent Km's of the enzyme toward cellobiose, laminaribiose, laminarin were 0.53 mM, 0.35 mM and 1.11 mM, respectively. Glucose and glucono-${\delta}-lactone$ were competitive inhibitors for the enzyme. Copper ($Cu^{2+}$), mercury ($Hg^{2+}$) and p-chloromercuribenzoate were strong inhibitors of the enzyme. The immunoblotting result revealed that one form of ${\beta}-glucosidase$ was biosynthesized, irrespective of carbon sources used. Polyacrylamide gel electrophoresis analysis of the in vitro translated product of total RNA from avicel grown mycelium established that the P. verruculosum ${\beta}-glucosidase$ precursor was approximately 95 kDa in size. The amino acid composition and N-terminal amino acid sequence are given.

  • PDF

Actinobacillus succinogenes의 혐기성배양에 의해 생합성 되는 숙신산의 생산성 향상을 위한 통계적 생산배지 최적화 (Statistical Optimization of Production Medium for Enhanced Production of Succinic Acid Produced by Anaerobic Fermentations of Actinobacillus succinogenes)

  • 박상민;전계택
    • KSBB Journal
    • /
    • 제29권3호
    • /
    • pp.165-178
    • /
    • 2014
  • Statistical medium optimization has been carried out for the production of succinic acid in anaerobic fermentations of Actinobacillus succinogenes. Succinic acid utilized as a precursor of many industrially important chemicals is a fourcarbon dicarboxylic acid, biosynthesized as one of the fermentation products of anaerobic metabolism by A. succinogenes. Through OFAT (one factor at a time) experiments, corn steep liquor (CSL), a very cheap agricultural byproduct, was found to have significant effects on enhanced production of succinic acid, when supplemented along with yeast extract. Hence, using these factors including glucose as a carbon/energy source, interactive effects were investigated through $2^n$ full factorial design (FFD) experiments, showing that the concentration of each component (i.e., glucose, yeast extract and CSL) should be higher. Further statistical experiments were conducted along the steepest ascent path, followed by response surface method (RSM) in order to find out optimal concentrations of each constituent. Consequently, optimized concentrations of glucose, yeast extract and CSL were observed to be 180 g/L, 15.08 g/L and 20.75 g/L respectively (10 g/L of $NaHCO_3$ and 100 g/L of $MgCO_3$ to be supplemented as bicarbonate suppliers), with the estimated production level of succinic acid to be 92.9 g/L (about 3.5 fold higher productivity as compared to the initial medium). Notably, the RSM-estimated production level was almost similar to the amount of succinic acid (92.9 g/L vs. 89.1 g/L) produced through the actual fermentation process performed using the statistically optimized production medium.

SiOC 박막에서 열처리에 의한 분극의 감쇄현상에 관한 연구 (Study on Lowering of the Polarization in SiOC Thin FIlms by Post Annealing)

  • 오데레사
    • 한국정보통신학회논문지
    • /
    • 제16권8호
    • /
    • pp.1747-1752
    • /
    • 2012
  • 탄소를 포함한 SiOC 박막은 BTMSM과 산소의 혼합 프리커서를 이용하여 CVD방법으로 증착하였다. 전통적으로 유전상수를 측정하기 위해서 MIS(금속/절연막/반도체)방법을 이용하는데 박막의 균일성을 보장할 수 없기 때문에 나타나는 오차의 한계를 보상하기 위해서 광학적인 분석방법과 경도측정 등을 통하여 SiOC 박막이 분극이 낮아지는 영역을 추적하였다. 분극이 낮고 비정질성이 높은 박막에서 유전상수가 낮아지는 특성을 이용하여 유전상수를 도출하였다. 열처리 후 SiOC 박막의 유전상수는 분극의 감소에 의해 감소하였으며, FTIR 분석에 의한 결합신호는 높은 파수 영역으로 이동하였다. 950~1200 cm-1 영역의 주 결합은 Si-C와 Si-O 결합으로 이루어졌으며, Si-O 결합의 강도가 증가한 것은 결합력이 증착한 샘플에서 보다 증가하였다는 것을 의미하며, 열처리 후 더 안정된 박막이 되었다. 열처리 후 SiOC 박막은 유전상수가 2.06으로 낮게 나타났다.

Preparation of Co3O4/NF Anode for Lithium-ion Batteries

  • Tian, Shiyi;Li, Botao;Zhang, Bochao;Wang, Yang;Yang, Xu;Ye, Han;Xia, Zhijie;Zheng, Guoxu
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.384-391
    • /
    • 2020
  • Due to its characteristics of light weight, high energy density, good safety, long service life, no memory effect, and environmental friendliness, lithium-ion batteries (LIBs) are widely used in various portable electronic products. The capacity and performance of LIBs largely depend on the performance of electrode materials. Therefore, the development of better positive and negative materials is the focus of current research. The application of metal organic framework materials (MOFs) derivatives in energy storage has attracted much attention and research. Using MOFs as precursors, porous metal oxides and porous carbon materials with controllable structure can be obtained. In this paper, rod-shaped Co-MOF-74 was grown on Ni Foam (NF) by hydrothermal method, and then Co-MOF-74/NF precursor was heat-treated to obtain rodshaped Co3O4/NF. Ni Foam was skeleton structured, which effectively relieved. The change of internal stress changes and destroys the structural volume of the electrode material and reduces the capacity attenuation. Co3O4/NF composite material has a specific discharge capacity of up to 1858 mA h/g for the first time, and a reversible capacity of up to 902.4 mA h/g at a current density of 200 mA/g, and has excellent rate and impedance performance. The synthesis strategy reported in this article opens the way to design high-performance electrodes for energy storage and electrochemical catalysis.

감마지방산 : 리뷰 (Gamma fatty acid : A review)

  • 박병성
    • 한국응용과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.446-458
    • /
    • 2008
  • Essential fatty acids (EFA) are fatty acids that must be obtained from the diet because they can not be biosynthesized by human or animals. Gamma fatty acids contain gamma-linolenic acid (GLA, 18:3n-6) and dihomo-gamma-linolenic acid (DHGLA, 20:3n-6) as intermediate metabolites of linoleic acid (LA, 18:2n-6), which is an EFA found in vegetable oils. GLA is an important essential fatty acid that is required by human and animals to function normally. Recently, studies have indicated that GLA may be an essential component of the cell membrane, as well as an active component of dietary supplements and medicine. GLA must beadministered through the diet because it is converted into DHGLA in the body quickly and completely. DHGLA is a key material involved in the metabolism of LA. GLA is biosysthesized by the rate limiting step of ${\Deltac}^6$-desaturase, which is an enzyme that desaturates LA, there by allowing it to be converted into DHGLA via chain elongation. In addition, DHGLA exerts bioactive effects via action as a precursor of eicosanoid series 1. Breast milk contains an abundant amount of GLA; however, GLA is also available directly in evening primrose oil, black currant seed oil, borage oil and hemp seed oil. In addition, GLA enriched animal and plant can be produced using biotechnology, and highly pure GLA can be extracted using supercritical fluids, such as supercritical carbon dioxide, which will allow economically feasible production of GLA for use in medicines.

Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light

  • Zhang, Kan;Meng, Ze-Da;Choi, Jong-Geun;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.246-251
    • /
    • 2010
  • The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-$TiO_2$ were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized $TiO_2$ were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor is $TiOSO_4{\cdot}xH_2O$ (TOS). An excellent photocatalytic activity of Fe/CNT-$TiO_2$ was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of $TiO_2$, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and $TiO_2$ components were responsible for improving the visible light photocatalytic activity.

논과 밭 토양에서 토층간 미생물 군집의 차이 (Variation of Microbial Community Along Depth in Paddy and Upland Field)

  • 김찬용;박기춘;이영근
    • 한국토양비료학회지
    • /
    • 제42권2호
    • /
    • pp.139-143
    • /
    • 2009
  • 인지질 지방산을 분석하여 특정 미생물군의 수직적 분포와 토층간 미생물 군집 패턴을 조사하였다. 경북 농업기술원에 위치하고, 질소, 인산, 가리의 화학비료만 장기 연용한 논과 밭 포장에서 15 cm 깊이까지 토양을 채취하였다. 인지질 지표 지방산을 주요인 분석으로 분석하여 토양 미생물 군집을 분석한 결과 논과 밭 토양의 미생물 군집은 뚜렷하게 구분되었으며, 토층간 차이보다 논과 밭의 차이가 더 컸다. 논보다 밭은 토층이 깊어짐에 따라 미생물 군집이 급격하게 변하였는데, 미생물 군집 측면에서 밭보다 논의 표층이 더 두껍다고 볼 수 있다. cyclopropyl/monoenoic precursor 비율과 전체 포화지방산/전체 불포화 지방산 비율은 토심이 깊어짐에 따라 증가하였는데, 이는 토심이 깊어질수록 탄소원과 통기가 부족하기 때문에 일어나는 현상으로 보인다. 대체로 표토는 그램음성균, 곰팡이 등의 상대적 비율이 높고 토심이 깊어질수록 세균과 방선균의 상대적 비율이 높아졌다.

소독부산물 제어를 위한 자연유기물(NOM) 제거와 고도정수처리공정 적용에 관한 연구 (A Study on Removal of Natural Organic Matter (NOM) and Application of Advanced Water Treatment Processes for Controlling Disinfection By-Products)

  • 김현구;엄한기;이동호;주현종
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.563-568
    • /
    • 2015
  • Natural Organic Matter (NOM) is a precursor of disinfection by products. Recently, with the increase in NOM concentration caused by a large amount of algae, the creation of disinfection by-products is becoming a big issue. Therefore, in this study, PAC+Membrane+F/A hybrid process was organized to control disinfection by-products in small-scale water treatment plants. The optimal dosage of PAC was set at 20 mg/L through Lab. scale test. Also, it is judged that NOM concentration must be less than 1.0 mg/L to meet the recommended criteria of drinking water quality monitoring items of disinfection by-products during chlorination. The existing conventional water treatment process was compared to the independent F/A process and the PAC+Membrane+F/A hybrid process through pilot plant operation, and the result showed that there is a need to apply an advanced water treatment process to remove not only NOMs but also Geosmin caused by algae. Accordingly, it is considered that applying the PAC+Membrane+F/A process will help in controling a clogged filter caused by a large amount of algae and disinfection by-products created by chlorination and can be used as an advanced water treatment process to meet the recommended criteria of drinking water quality monitoring items.

SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries

  • Lee, Yoon Joo;Ryu, Ji Yeon;Roh, Kwang Chul;Kim, Soo Ryong;Kwon, Woo Teck;Shin, Dong-Geun;Kim, Younghee
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.480-484
    • /
    • 2013
  • Since SiOC was introduced as an anode material for lithium ion batteries, it has been studied with different chemical compositions and microstructures using various silicon based inorganic polymers. Poly(phenyl carbosilane) is a SiOC precursor with a high carbon supply in the form of the phenyl unit, and it has been investigated for film applications. Unlike any other siloxane-based polymers, oxygen atoms must be utilized in an oxidation process, and the amount of oxygen is controllable. In this study, SiOC anodes were prepared using poly(phenyl carbosilane) with different heat treatment conditions, and their electrochemical properties as an anode material for lithium ion batteries were studied. In detail, cyclic voltammetry and charge-discharge cycling behavior were evaluated using a half-cell. A SiOC anode which was prepared under a heat treatment condition at $1200^{\circ}C$ after an oxidation step showed stable cyclic performance with a reversible capacity of 360 mAh/g.